BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22820988)

  • 1. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F.
    Bandaranayake RM; Ungureanu D; Shan Y; Shaw DE; Silvennoinen O; Hubbard SR
    Nat Struct Mol Biol; 2012 Aug; 19(8):754-9. PubMed ID: 22820988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio modeling and experimental assessment of Janus Kinase 2 (JAK2) kinase-pseudokinase complex structure.
    Wan X; Ma Y; McClendon CL; Huang LJ; Huang N
    PLoS Comput Biol; 2013 Apr; 9(4):e1003022. PubMed ID: 23592968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses.
    Varghese LN; Ungureanu D; Liau NP; Young SN; Laktyushin A; Hammaren H; Lucet IS; Nicola NA; Silvennoinen O; Babon JJ; Murphy JM
    Biochem J; 2014 Mar; 458(2):395-405. PubMed ID: 24354892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential biological activity of disease-associated JAK2 mutants.
    Zou H; Yan D; Mohi G
    FEBS Lett; 2011 Apr; 585(7):1007-13. PubMed ID: 21362419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of JAK2 activation in erythropoietin receptor and pathogenic JAK2 signaling.
    Abraham BG; Haikarainen T; Vuorio J; Girych M; Virtanen AT; Kurttila A; Karathanasis C; Heilemann M; Sharma V; Vattulainen I; Silvennoinen O
    Sci Adv; 2024 Mar; 10(10):eadl2097. PubMed ID: 38457493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of imidazo[1,2-
    Moslin R; Gardner D; Santella J; Zhang Y; Duncia JV; Liu C; Lin J; Tokarski JS; Strnad J; Pedicord D; Chen J; Blat Y; Zupa-Fernandez A; Cheng L; Sun H; Chaudhry C; Huang C; D'Arienzo C; Sack JS; Muckelbauer JK; Chang C; Tredup J; Xie D; Aranibar N; Burke JR; Carter PH; Weinstein DS
    Medchemcomm; 2017 Apr; 8(4):700-712. PubMed ID: 30108788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Catalytically Disabled Double Mutant of Src Tyrosine Kinase Can Be Stabilized into an Active-Like Conformation.
    Meng Y; Ahuja LG; Kornev AP; Taylor SS; Roux B
    J Mol Biol; 2018 Mar; 430(6):881-889. PubMed ID: 29410316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations.
    Wilmes S; Hafer M; Vuorio J; Tucker JA; Winkelmann H; Löchte S; Stanly TA; Pulgar Prieto KD; Poojari C; Sharma V; Richter CP; Kurre R; Hubbard SR; Garcia KC; Moraga I; Vattulainen I; Hitchcock IS; Piehler J
    Science; 2020 Feb; 367(6478):643-652. PubMed ID: 32029621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase.
    Shan Y; Gnanasambandan K; Ungureanu D; Kim ET; Hammarén H; Yamashita K; Silvennoinen O; Shaw DE; Hubbard SR
    Nat Struct Mol Biol; 2014 Jul; 21(7):579-84. PubMed ID: 24918548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation.
    Hammarén HM; Ungureanu D; Grisouard J; Skoda RC; Hubbard SR; Silvennoinen O
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4642-7. PubMed ID: 25825724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2).
    Min X; Ungureanu D; Maxwell S; Hammarén H; Thibault S; Hillert EK; Ayres M; Greenfield B; Eksterowicz J; Gabel C; Walker N; Silvennoinen O; Wang Z
    J Biol Chem; 2015 Nov; 290(45):27261-27270. PubMed ID: 26359499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the structure and function of the pseudokinase domain in JAK2.
    Silvennoinen O; Ungureanu D; Niranjan Y; Hammaren H; Bandaranayake R; Hubbard SR
    Biochem Soc Trans; 2013 Aug; 41(4):1002-7. PubMed ID: 23863170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition.
    Lupardus PJ; Ultsch M; Wallweber H; Bir Kohli P; Johnson AR; Eigenbrot C
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8025-30. PubMed ID: 24843152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular regulation of Janus kinase (JAK) activation.
    Babon JJ; Lucet IS; Murphy JM; Nicola NA; Varghese LN
    Biochem J; 2014 Aug; 462(1):1-13. PubMed ID: 25057888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a pseudokinase-domain switch that controls oncogenic activation of Jak kinases.
    Toms AV; Deshpande A; McNally R; Jeong Y; Rogers JM; Kim CU; Gruner SM; Ficarro SB; Marto JA; Sattler M; Griffin JD; Eck MJ
    Nat Struct Mol Biol; 2013 Oct; 20(10):1221-3. PubMed ID: 24013208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activating Janus kinase pseudokinase domain mutations in myeloproliferative and other blood cancers.
    Constantinescu SN; Leroy E; Gryshkova V; Pecquet C; Dusa A
    Biochem Soc Trans; 2013 Aug; 41(4):1048-54. PubMed ID: 23863177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling JAK2 V617F activation from cytokine-induced signalling by modulation of JH2 αC helix.
    Leroy E; Dusa A; Colau D; Motamedi A; Cahu X; Mouton C; Huang LJ; Shiau AK; Constantinescu SN
    Biochem J; 2016 Jun; 473(11):1579-91. PubMed ID: 27029346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles.
    Rodriguez PL; Harada T; Christian DA; Pantano DA; Tsai RK; Discher DE
    Science; 2013 Feb; 339(6122):971-5. PubMed ID: 23430657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protease activity of the paracaspase MALT1 is controlled by monoubiquitination.
    Pelzer C; Cabalzar K; Wolf A; Gonzalez M; Lenz G; Thome M
    Nat Immunol; 2013 Apr; 14(4):337-45. PubMed ID: 23416615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible.
    Losman JA; Looper RE; Koivunen P; Lee S; Schneider RK; McMahon C; Cowley GS; Root DE; Ebert BL; Kaelin WG
    Science; 2013 Mar; 339(6127):1621-5. PubMed ID: 23393090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.