BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22821241)

  • 1. A computational examination on the structure, spin-state energetics and spectroscopic parameters of high-valent Fe(IV)=NTs species.
    Jaccob M; Rajaraman G
    Dalton Trans; 2012 Sep; 41(34):10430-9. PubMed ID: 22821241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of compound II: electronic structure analysis of methane hydroxylation by oxoiron(IV) porphyrin complexes.
    Rosa A; Ricciardi G
    Inorg Chem; 2012 Sep; 51(18):9833-45. PubMed ID: 22946694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure and spectroscopy of "superoxidized" iron centers in model systems: theoretical and experimental trends.
    Berry JF; DeBeer George S; Neese F
    Phys Chem Chem Phys; 2008 Aug; 10(30):4361-74. PubMed ID: 18654674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure of an iron-porphyrin-nitrene complex.
    Conradie J; Ghosh A
    Inorg Chem; 2010 Jan; 49(1):243-8. PubMed ID: 19994873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic study of [Fe2O2(5-Et3-TPA)2]3+: nature of the Fe2O2 diamond core and its possible relevance to high-valent binuclear non-heme enzyme intermediates.
    Skulan AJ; Hanson MA; Hsu HF; Que L; Solomon EI
    J Am Chem Soc; 2003 Jun; 125(24):7344-56. PubMed ID: 12797809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the synthesis of more reactive S = 2 non-heme oxoiron(IV) complexes.
    Puri M; Que L
    Acc Chem Res; 2015 Aug; 48(8):2443-52. PubMed ID: 26176555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory calculations on ruthenium(IV) bis(amido) porphyrins: search for a broader perspective of heme protein compound II intermediates.
    Gonzalez E; Brothers PJ; Ghosh A
    J Phys Chem B; 2010 Nov; 114(46):15380-8. PubMed ID: 20979402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electronic structure of iron corroles: a combined experimental and quantum chemical study.
    Ye S; Tuttle T; Bill E; Simkhovich L; Gross Z; Thiel W; Neese F
    Chemistry; 2008; 14(34):10839-51. PubMed ID: 18956397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mössbauer, electron paramagnetic resonance, and crystallographic characterization of a high-spin Fe(I) diketiminate complex with orbital degeneracy.
    Stoian SA; Yu Y; Smith JM; Holland PL; Bominaar EL; Münck E
    Inorg Chem; 2005 Jul; 44(14):4915-22. PubMed ID: 15998018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of high-valent Fe(IV)S6-cores by dithiocarbamate(1-) and 1,2-dithiolate(2-) ligands in octahedral [Fe(IV)(Et2dtc)(3-n)(mnt)(n)]((n-1)-) complexes (n=0, 1, 2, 3): a spectroscopic and density functional theory computational study.
    Milsmann C; Sproules S; Bill E; Weyhermüller T; George SD; Wieghardt K
    Chemistry; 2010 Mar; 16(12):3628-45. PubMed ID: 20209531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, structure determination, and spectroscopic/computational characterization of a series of Fe(II)-thiolate model complexes: implications for Fe-S bonding in superoxide reductases.
    Fiedler AT; Halfen HL; Halfen JA; Brunold TC
    J Am Chem Soc; 2005 Feb; 127(6):1675-89. PubMed ID: 15701002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benzoannelation stabilizes the d(xy)1 state of low-spin iron(III) porphyrinates.
    Ikeue T; Handa M; Chamberlin A; Ghosh A; Ongayi O; Vicente MG; Ikezaki A; Nakamura M
    Inorg Chem; 2011 Apr; 50(8):3567-81. PubMed ID: 21410230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFT analysis of the electronic structure of Fe(IV) species active in nitrene transfer catalysis: influence of the coordination sphere.
    Patra R; Maldivi P
    J Mol Model; 2016 Nov; 22(11):278. PubMed ID: 27787777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninnocence of the ligand glyoxal-bis(2-mercaptoanil). The electronic structures of [Fe(gma)]2, [Fe(gma)(py)] x py, [Fe(gma)(CN)]1-/0, [Fe(gma)I], and [Fe(gma)(PR3)(n)] (n = 1, 2). Experimental and theoretical evidence for "excited state" coordination.
    Ghosh P; Bill E; Weyhermüller T; Neese F; Wieghardt K
    J Am Chem Soc; 2003 Feb; 125(5):1293-308. PubMed ID: 12553831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating picosecond iron K-edge X-ray absorption spectra by ab initio methods to study photoinduced changes in the electronic structure of Fe(II) spin crossover complexes.
    Van Kuiken BE; Khalil M
    J Phys Chem A; 2011 Oct; 115(39):10749-61. PubMed ID: 21846088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory study of the structural, electronic, and magnetic properties of a mu-oxo bridged dinuclear Fe(IV) complex based on a tetra-amido macrocyclic ligand.
    Chanda A; de Oliveira FT; Collins TJ; Münck E; Bominaar EL
    Inorg Chem; 2008 Oct; 47(20):9372-9. PubMed ID: 18817379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of methane by an N-bridged high-valent diiron-oxo species: electronic structure implications on the reactivity.
    Ansari M; Vyas N; Ansari A; Rajaraman G
    Dalton Trans; 2015 Sep; 44(34):15232-43. PubMed ID: 25978584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An abiotic analogue of the diiron(IV)oxo "diamond core" of soluble methane monooxygenase generated by direct activation of O2 in aqueous Fe(II)/EDTA solutions: thermodynamics and electronic structure.
    Bernasconi L; Belanzoni P; Baerends EJ
    Phys Chem Chem Phys; 2011 Sep; 13(33):15272-82. PubMed ID: 21776512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bis(imino)pyridine iron dinitrogen compounds revisited: differences in electronic structure between four- and five-coordinate derivatives.
    Stieber SC; Milsmann C; Hoyt JM; Turner ZR; Finkelstein KD; Wieghardt K; DeBeer S; Chirik PJ
    Inorg Chem; 2012 Mar; 51(6):3770-85. PubMed ID: 22394054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.