These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22821264)

  • 21. 2D-DIGE: comparative proteomics of cellular signalling pathways.
    Larbi NB; Jefferies C
    Methods Mol Biol; 2009; 517():105-32. PubMed ID: 19378013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel strategy for quantitative proteomics using isotope-coded protein labels.
    Schmidt A; Kellermann J; Lottspeich F
    Proteomics; 2005 Jan; 5(1):4-15. PubMed ID: 15602776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isotope coded protein label quantification of serum proteins--comparison with the label-free LC-MS and validation using the MRM approach.
    Turtoi A; Mazzucchelli GD; De Pauw E
    Talanta; 2010 Feb; 80(4):1487-95. PubMed ID: 20082806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry.
    Jensen ON
    Curr Opin Chem Biol; 2004 Feb; 8(1):33-41. PubMed ID: 15036154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer.
    Ouvry-Patat SA; Torres MP; Gelfand CA; Quek HH; Easterling M; Speir JP; Borchers CH
    Methods Mol Biol; 2009; 492():215-31. PubMed ID: 19241035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Identification of proteome molecules by proteomics using two-dimensional gel electrophoresis and MALDI-TOF MS].
    Song EJ; Lee KJ
    Exp Mol Med; 2001 Apr; 33(1 Suppl):5-18. PubMed ID: 11708325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering.
    Wang H; Alvarez S; Hicks LM
    J Proteome Res; 2012 Jan; 11(1):487-501. PubMed ID: 22059437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast and sensitive coomassie staining in quantitative proteomics.
    Dyballa N; Metzger S
    Methods Mol Biol; 2012; 893():47-59. PubMed ID: 22665293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The proteomic advantage: label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis.
    Boehmer JL; DeGrasse JA; McFarland MA; Tall EA; Shefcheck KJ; Ward JL; Bannerman DD
    Vet Immunol Immunopathol; 2010 Dec; 138(4):252-66. PubMed ID: 21067814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Post-translational modifications and protein-specific isoforms in endometriosis revealed by 2D DIGE.
    Stephens AN; Hannan NJ; Rainczuk A; Meehan KL; Chen J; Nicholls PK; Rombauts LJ; Stanton PG; Robertson DM; Salamonsen LA
    J Proteome Res; 2010 May; 9(5):2438-49. PubMed ID: 20199104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of S-nitrosylated proteins.
    Torta F; Bachi A
    Methods Mol Biol; 2012; 893():405-16. PubMed ID: 22665314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo quantitative proteome profiling: planning and evaluation of SILAC experiments.
    Kirchner M; Selbach M
    Methods Mol Biol; 2012; 893():175-99. PubMed ID: 22665302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analytical methodologies for the detection and structural characterization of phosphorylated proteins.
    D'Ambrosio C; Salzano AM; Arena S; Renzone G; Scaloni A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):163-80. PubMed ID: 16891166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein detection and quantitation technologies for gel-based proteome analysis.
    Weiss W; Weiland F; Görg A
    Methods Mol Biol; 2009; 564():59-82. PubMed ID: 19544017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high-resolution two dimensional Gel- and Pro-Q DPS-based proteomics workflow for phosphoprotein identification and quantitative profiling.
    Agrawal GK; Thelen JJ
    Methods Mol Biol; 2009; 527():3-19, ix. PubMed ID: 19241001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.
    Qin W; Song Z; Fan C; Zhang W; Cai Y; Zhang Y; Qian X
    Anal Chem; 2012 Apr; 84(7):3138-44. PubMed ID: 22413971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome.
    Bremang M; Cuomo A; Agresta AM; Stugiewicz M; Spadotto V; Bonaldi T
    Mol Biosyst; 2013 Sep; 9(9):2231-47. PubMed ID: 23748837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and application of proteomics technologies in Saccharomyces cerevisiae.
    Kolkman A; Slijper M; Heck AJ
    Trends Biotechnol; 2005 Dec; 23(12):598-604. PubMed ID: 16202464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of food proteins and peptides by mass spectrometry-based techniques.
    Mamone G; Picariello G; Caira S; Addeo F; Ferranti P
    J Chromatogr A; 2009 Oct; 1216(43):7130-42. PubMed ID: 19699482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Culture and preparation of human embryonic stem cells for proteomics-based applications.
    King CC
    Methods Mol Biol; 2010; 584():151-77. PubMed ID: 19907977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.