BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 22821268)

  • 1. Current challenges in software solutions for mass spectrometry-based quantitative proteomics.
    Cappadona S; Baker PR; Cutillas PR; Heck AJ; van Breukelen B
    Amino Acids; 2012 Sep; 43(3):1087-108. PubMed ID: 22821268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Software tools for MS-based quantitative proteomics: a brief overview.
    Lemeer S; Hahne H; Pachl F; Kuster B
    Methods Mol Biol; 2012; 893():489-99. PubMed ID: 22665318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.
    Bindschedler LV; Mills DJ; Cramer R
    Methods Mol Biol; 2012; 893():155-73. PubMed ID: 22665301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key issues in the acquisition and analysis of qualitative and quantitative mass spectrometry data for peptide-centric proteomic experiments.
    Thompson AJ; Abu M; Hanger DP
    Amino Acids; 2012 Sep; 43(3):1075-85. PubMed ID: 22821266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation.
    Schilling B; Rardin MJ; MacLean BX; Zawadzka AM; Frewen BE; Cusack MP; Sorensen DJ; Bereman MS; Jing E; Wu CC; Verdin E; Kahn CR; Maccoss MJ; Gibson BW
    Mol Cell Proteomics; 2012 May; 11(5):202-14. PubMed ID: 22454539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-Based and Label-Free Strategies for Protein Quantitation.
    Anand S; Samuel M; Ang CS; Keerthikumar S; Mathivanan S
    Methods Mol Biol; 2017; 1549():31-43. PubMed ID: 27975282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current trends in computational inference from mass spectrometry-based proteomics.
    Webb-Robertson BJ; Cannon WR
    Brief Bioinform; 2007 Sep; 8(5):304-17. PubMed ID: 17584764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates.
    Schwämmle V; León IR; Jensen ON
    J Proteome Res; 2013 Sep; 12(9):3874-83. PubMed ID: 23875961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods and Algorithms for Quantitative Proteomics by Mass Spectrometry.
    Matthiesen R; Carvalho AS
    Methods Mol Biol; 2020; 2051():161-197. PubMed ID: 31552629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in proteome informatics for mass spectrometry analysis.
    Wright JC; Hubbard SJ
    Comb Chem High Throughput Screen; 2009 Feb; 12(2):194-202. PubMed ID: 19199887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annotator: postprocessing software for generating function-based signatures from quantitative mass spectrometry.
    Sylvester JE; Bray TS; Kron SJ
    J Proteome Res; 2012 Mar; 11(3):1521-36. PubMed ID: 22224429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry.
    Aoshima K; Takahashi K; Ikawa M; Kimura T; Fukuda M; Tanaka S; Parry HE; Fujita Y; Yoshizawa AC; Utsunomiya S; Kajihara S; Tanaka K; Oda Y
    BMC Bioinformatics; 2014 Nov; 15(1):376. PubMed ID: 25420746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Informatics solutions for high-throughput proteomics.
    Topaloglou T
    Drug Discov Today; 2006 Jun; 11(11-12):509-16. PubMed ID: 16713902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iTRAQ data interpretation.
    Vaudel M; Burkhart JM; Zahedi RP; Martens L; Sickmann A
    Methods Mol Biol; 2012; 893():501-9. PubMed ID: 22665319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Advances in high-throughput proteomic analysis].
    Wu Q; Sui X; Tian R
    Se Pu; 2021 Feb; 39(2):112-117. PubMed ID: 34227342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Installation and use of the Computational Proteomics Analysis System (CPAS).
    Myers T; Law W; Eng JK; McIntosh M
    Curr Protoc Bioinformatics; 2007 Jun; Chapter 13():Unit 13.5. PubMed ID: 18428786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope-coded protein label.
    Kellermann J; Lottspeich F
    Methods Mol Biol; 2012; 893():143-53. PubMed ID: 22665300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of label-free proteomics for differential analysis of lung carcinoma cell line A549.
    Sitek B; Waldera-Lupa DM; Poschmann G; Meyer HE; Stühler K
    Methods Mol Biol; 2012; 893():241-8. PubMed ID: 22665305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments.
    Matzke MM; Brown JN; Gritsenko MA; Metz TO; Pounds JG; Rodland KD; Shukla AK; Smith RD; Waters KM; McDermott JE; Webb-Robertson BJ
    Proteomics; 2013 Feb; 13(3-4):493-503. PubMed ID: 23019139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.
    Teo G; Kim S; Tsou CC; Collins B; Gingras AC; Nesvizhskii AI; Choi H
    J Proteomics; 2015 Nov; 129():108-120. PubMed ID: 26381204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.