BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22821410)

  • 1. Identification and expression of an APETALA2-like gene from Nelumbo nucifera.
    Liu Z; Gu C; Chen F; Jiang J; Yang Y; Li P; Chen S; Zhang Z
    Appl Biochem Biotechnol; 2012 Sep; 168(2):383-91. PubMed ID: 22821410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and expression of an APETALA1-like gene from Nelumbo nucifera.
    Kong DZ; Shen XY; Guo B; Dong JX; Li YH; Liu YP
    Genet Mol Res; 2015 Jun; 14(2):6819-29. PubMed ID: 26125889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and expression analysis of an Mn-SOD gene from Nelumbo nucifera.
    Dong C; Li G; Li Z; Zhu H; Zhou M; Hu Z
    Appl Biochem Biotechnol; 2009 Sep; 158(3):605-14. PubMed ID: 19018482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes.
    Aukerman MJ; Sakai H
    Plant Cell; 2003 Nov; 15(11):2730-41. PubMed ID: 14555699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of chalcone synthase cDNAs (NnCHS) from Nelumbo nucifera.
    Dong C; Yu AQ; Wang ML; Zheng XW; Diao Y; Xie KQ; Zhou MQ; Hu ZL
    Cell Mol Biol (Noisy-le-grand); 2015 Dec; 61(8):112-7. PubMed ID: 26718438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana.
    Takeda S; Matsumoto N; Okada K
    Development; 2004 Jan; 131(2):425-34. PubMed ID: 14681191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana.
    Liu Z; Gu C; Chen F; Yang D; Wu K; Chen S; Jiang J; Zhang Z
    Appl Biochem Biotechnol; 2012 Feb; 166(3):722-34. PubMed ID: 22161260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny and domain evolution in the APETALA2-like gene family.
    Kim S; Soltis PS; Wall K; Soltis DE
    Mol Biol Evol; 2006 Jan; 23(1):107-20. PubMed ID: 16151182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana.
    Mlotshwa S; Yang Z; Kim Y; Chen X
    Plant Mol Biol; 2006 Jul; 61(4-5):781-93. PubMed ID: 16897492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and characterization of NnPPO cDNA from lotus (Nelumbo nucifera) in rhizome browning.
    Dong C; Yu AQ; Yang MG; Zhou MQ; Hu ZL
    Cell Mol Biol (Noisy-le-grand); 2016 Apr; 62(4):67-72. PubMed ID: 27188738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172.
    Varkonyi-Gasic E; Lough RH; Moss SM; Wu R; Hellens RP
    Plant Mol Biol; 2012 Mar; 78(4-5):417-29. PubMed ID: 22290408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VAAMANA--a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis.
    Bhatt AM; Etchells JP; Canales C; Lagodienko A; Dickinson H
    Gene; 2004 Mar; 328():103-11. PubMed ID: 15019989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.
    Jofuku KD; den Boer BG; Van Montagu M; Okamuro JK
    Plant Cell; 1994 Sep; 6(9):1211-25. PubMed ID: 7919989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutual regulation of Arabidopsis thaliana ethylene-responsive element binding protein and a plant floral homeotic gene, APETALA2.
    Ogawa T; Uchimiya H; Kawai-Yamada M
    Ann Bot; 2007 Feb; 99(2):239-44. PubMed ID: 17204538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the APETALA2 Gene Lineage in Seed Plants.
    Zumajo-Cardona C; Pabón-Mora N
    Mol Biol Evol; 2016 Jul; 33(7):1818-32. PubMed ID: 27030733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of flower-bud transcriptome and development of genic SSR markers in Asian lotus (Nelumbo nucifera Gaertn.).
    Zhang W; Tian D; Huang X; Xu Y; Mo H; Liu Y; Meng J; Zhang D
    PLoS One; 2014; 9(11):e112223. PubMed ID: 25379700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The expression of manganese superoxide dismutase gene from Nelumbo nucifera responds strongly to chilling and oxidative stresses.
    Li W; Qi L; Lin X; Chen H; Ma Z; Wu K; Huang S
    J Integr Plant Biol; 2009 Mar; 51(3):279-86. PubMed ID: 19261071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis).
    Tan FC; Swain SM
    Physiol Plant; 2007 Nov; 131(3):481-95. PubMed ID: 18251886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis.
    Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H
    Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and expression of one chloroplastic ascorbate peroxidase gene from Nelumbo nucifera.
    Dong C; Zheng X; Li G; Pan C; Zhou M; Hu Z
    Biochem Genet; 2011 Oct; 49(9-10):656-64. PubMed ID: 21607664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.