BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 22821453)

  • 21. Genotype networks of 80 quantitative Arabidopsis thaliana phenotypes reveal phenotypic evolvability despite pervasive epistasis.
    Schweizer G; Wagner A
    PLoS Comput Biol; 2020 Aug; 16(8):e1008082. PubMed ID: 32790763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smaller, scale-free gene networks increase quantitative trait heritability and result in faster population recovery.
    Malcom JW
    PLoS One; 2011 Feb; 6(2):e14645. PubMed ID: 21347400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the genetic architecture of complex traits in experimental populations.
    Yang J; Zhu J; Williams RW
    Bioinformatics; 2007 Jun; 23(12):1527-36. PubMed ID: 17459962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability.
    Kumar A; Pathak RK; Gupta SM; Gaur VS; Pandey D
    OMICS; 2015 Oct; 19(10):581-601. PubMed ID: 26484978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environment-dependent epistasis increases phenotypic diversity in gene regulatory networks.
    Baier F; Gauye F; Perez-Carrasco R; Payne JL; Schaerli Y
    Sci Adv; 2023 May; 9(21):eadf1773. PubMed ID: 37224262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering Combinatorial Genetics.
    Wong AS; Choi GC; Lu TK
    Annu Rev Genet; 2016 Nov; 50():515-538. PubMed ID: 27732793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic architecture of naturally occurring quantitative traits in plants: an updated synthesis.
    Alonso-Blanco C; Méndez-Vigo B
    Curr Opin Plant Biol; 2014 Apr; 18():37-43. PubMed ID: 24565952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifiability and inference of pathway motifs by epistasis analysis.
    Phenix H; Perkins T; Kærn M
    Chaos; 2013 Jun; 23(2):025103. PubMed ID: 23822501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive evolution: evaluating empirical support for theoretical predictions.
    Olson-Manning CF; Wagner MR; Mitchell-Olds T
    Nat Rev Genet; 2012 Dec; 13(12):867-77. PubMed ID: 23154809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Network theory for data-driven epistasis networks.
    Lareau CA; McKinney BA
    Methods Mol Biol; 2015; 1253():285-300. PubMed ID: 25403538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life's attractors : understanding developmental systems through reverse engineering and in silico evolution.
    Jaeger J; Crombach A
    Adv Exp Med Biol; 2012; 751():93-119. PubMed ID: 22821455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Emili A
    Methods Mol Biol; 2011; 781():99-126. PubMed ID: 21877280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Population and quantitative genetics of regulatory networks.
    Frank SA
    J Theor Biol; 1999 Apr; 197(3):281-94. PubMed ID: 10089143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionary transitions in controls reconcile adaptation with continuity of evolution.
    Badyaev AV
    Semin Cell Dev Biol; 2019 Apr; 88():36-45. PubMed ID: 29778791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide approaches to the study of adaptive gene expression evolution: systematic studies of evolutionary adaptations involving gene expression will allow many fundamental questions in evolutionary biology to be addressed.
    Fraser HB
    Bioessays; 2011 Jun; 33(6):469-77. PubMed ID: 21538412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploitation of genetic interaction network topology for the prediction of epistatic behavior.
    Alanis-Lobato G; Cannistraci CV; Ravasi T
    Genomics; 2013 Oct; 102(4):202-8. PubMed ID: 23892246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis.
    Moore JH; Williams SM
    Bioessays; 2005 Jun; 27(6):637-46. PubMed ID: 15892116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks.
    Draghi J; Whitlock M
    Evolution; 2015 Sep; 69(9):2345-58. PubMed ID: 26200818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systems-biology approaches for predicting genomic evolution.
    Papp B; Notebaart RA; Pál C
    Nat Rev Genet; 2011 Aug; 12(9):591-602. PubMed ID: 21808261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling genotype-phenotype relationships and human disease with genetic interaction networks.
    Lehner B
    J Exp Biol; 2007 May; 210(Pt 9):1559-66. PubMed ID: 17449820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.