These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22821510)

  • 1. Optical trapping microrheology in cultured human cells.
    Bertseva E; Grebenkov D; Schmidhauser P; Gribkova S; Jeney S; Forró L
    Eur Phys J E Soft Matter; 2012 Jul; 35(7):63. PubMed ID: 22821510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Living cells as a biological analog of optical tweezers - a non-invasive microrheology approach.
    Hardiman W; Clark M; Friel C; Huett A; Pérez-Cota F; Setchfield K; Wright AJ; Tassieri M
    Acta Biomater; 2023 Aug; 166():317-325. PubMed ID: 37137402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells.
    Mas J; Richardson AC; Reihani SN; Oddershede LB; Berg-Sørensen K
    Phys Biol; 2013 Aug; 10(4):046006. PubMed ID: 23820071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microrheology and microstructure of Fmoc-derivative hydrogels.
    Aufderhorst-Roberts A; Frith WJ; Kirkland M; Donald AM
    Langmuir; 2014 Apr; 30(15):4483-92. PubMed ID: 24684622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology and DWS microrheology of concentrated suspensions of the semiflexible filamentous fd virus.
    Sarmiento-Gomez E; Montalvan-Sorrosa D; Garza C; Mas-Oliva J; Castillo R
    Eur Phys J E Soft Matter; 2012 May; 35(5):35. PubMed ID: 22610819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High- and low-frequency mechanical properties of living starfish oocytes.
    Pesce G; Selvaggi L; Rusciano G; Sasso A
    J Biophotonics; 2011 May; 4(5):324-34. PubMed ID: 20715134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Analysis of Viscoelastic Properties of Red Blood Cells using Optical Tweezers and Defocusing Microscopy.
    Barreto L; Gomez F; Lourenço PS; Freitas DG; Soares J; Berto-Junior C; Agero U; Viana NB; Pontes B
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments.
    Lin J; Valentine MT
    Rev Sci Instrum; 2012 May; 83(5):053905. PubMed ID: 22667631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping intracellular mechanics on micropatterned substrates.
    Mandal K; Asnacios A; Goud B; Manneville JB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7159-E7168. PubMed ID: 27799529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of living cells measured by laser tracking microrheology.
    Yamada S; Wirtz D; Kuo SC
    Biophys J; 2000 Apr; 78(4):1736-47. PubMed ID: 10733956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS).
    Chiang CC; Wei MT; Chen YQ; Yen PW; Huang YC; Chen JY; Lavastre O; Guillaume H; Guillaume D; Chiou A
    Opt Express; 2011 Apr; 19(9):8847-54. PubMed ID: 21643138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle tracking microrheology of lyotropic liquid crystals.
    Alam MM; Mezzenga R
    Langmuir; 2011 May; 27(10):6171-8. PubMed ID: 21510686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive microrheology of solvent-induced fibrillar protein networks.
    Corrigan AM; Donald AM
    Langmuir; 2009 Aug; 25(15):8599-605. PubMed ID: 19344157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical solution of the generalized Langevin equation with hydrodynamic interactions: subdiffusion of heavy tracers.
    Grebenkov DS; Vahabi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012130. PubMed ID: 24580195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-passive calibration of optical tweezers in viscoelastic media.
    Fischer M; Richardson AC; Reihani SN; Oddershede LB; Berg-Sørensen K
    Rev Sci Instrum; 2010 Jan; 81(1):015103. PubMed ID: 20113125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface shear microrheometer with an optically driven oscillating probe particle.
    Park CY; Ou-Yang HD; Kim MW
    Rev Sci Instrum; 2011 Sep; 82(9):094702. PubMed ID: 21974607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treating inertia in passive microbead rheology.
    Indei T; Schieber JD; Córdoba A; Pilyugina E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021504. PubMed ID: 22463216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear microrheology with optical tweezers of living cells 'is not an option'!
    Tassieri M
    Soft Matter; 2015 Aug; 11(29):5792-8. PubMed ID: 26100967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular viscoelasticity probed by active rheology in optical tweezers.
    Lyubin EV; Khokhlova MD; Skryabina MN; Fedyanin AA
    J Biomed Opt; 2012 Oct; 17(10):101510. PubMed ID: 23223986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.