BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22822203)

  • 1. Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase-mediated biosynthesis.
    Mylne JS; Chan LY; Chanson AH; Daly NL; Schaefer H; Bailey TL; Nguyencong P; Cascales L; Craik DJ
    Plant Cell; 2012 Jul; 24(7):2765-78. PubMed ID: 22822203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The legumain McPAL1 from Momordica cochinchinensis is a highly stable Asx-specific splicing enzyme.
    Liew HT; To J; Zhang X; Hemu X; Chan NY; Serra A; Sze SK; Liu CF; Tam JP
    J Biol Chem; 2021 Dec; 297(6):101325. PubMed ID: 34710371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast-based bioproduction of disulfide-rich peptides and their cyclization via asparaginyl endopeptidases.
    Yap K; Du J; Rehm FBH; Tang SR; Zhou Y; Xie J; Wang CK; de Veer SJ; Lua LHL; Durek T; Craik DJ
    Nat Protoc; 2021 Mar; 16(3):1740-1760. PubMed ID: 33597770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bifunctional asparaginyl endopeptidase efficiently catalyzes both cleavage and cyclization of cyclic trypsin inhibitors.
    Du J; Yap K; Chan LY; Rehm FBH; Looi FY; Poth AG; Gilding EK; Kaas Q; Durek T; Craik DJ
    Nat Commun; 2020 Mar; 11(1):1575. PubMed ID: 32221295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of Momordica cyclic peptides.
    Mahatmanto T; Mylne JS; Poth AG; Swedberg JE; Kaas Q; Schaefer H; Craik DJ
    Mol Biol Evol; 2015 Feb; 32(2):392-405. PubMed ID: 25376175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrocyclization by asparaginyl endopeptidases.
    James AM; Haywood J; Mylne JS
    New Phytol; 2018 May; 218(3):923-928. PubMed ID: 28322452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An asparaginyl endopeptidase mediates in vivo protein backbone cyclization.
    Saska I; Gillon AD; Hatsugai N; Dietzgen RG; Hara-Nishimura I; Anderson MA; Craik DJ
    J Biol Chem; 2007 Oct; 282(40):29721-8. PubMed ID: 17698845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular proteins and mechanisms of cyclization.
    Conlan BF; Gillon AD; Craik DJ; Anderson MA
    Biopolymers; 2010; 94(5):573-83. PubMed ID: 20564019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragmentation follows structure: top-down mass spectrometry elucidates the topology of engineered cystine-knot miniproteins.
    Reinwarth M; Avrutina O; Fabritz S; Kolmar H
    PLoS One; 2014; 9(10):e108626. PubMed ID: 25303319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure.
    Hernandez JF; Gagnon J; Chiche L; Nguyen TM; Andrieu JP; Heitz A; Trinh Hong T; Pham TT; Le Nguyen D
    Biochemistry; 2000 May; 39(19):5722-30. PubMed ID: 10801322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins.
    Heitz A; Hernandez JF; Gagnon J; Hong TT; Pham TT; Nguyen TM; Le-Nguyen D; Chiche L
    Biochemistry; 2001 Jul; 40(27):7973-83. PubMed ID: 11434766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental isotopic labeling of a single-domain globular protein without any refolding step by an asparaginyl endopeptidase.
    Mikula KM; Tascón I; Tommila JJ; Iwaï H
    FEBS Lett; 2017 May; 591(9):1285-1294. PubMed ID: 28369872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular Permutation of the Native Enzyme-Mediated Cyclization Position in Cyclotides.
    Smithies BJ; Huang YH; Jackson MA; Yap K; Gilding EK; Harris KS; Anderson MA; Craik DJ
    ACS Chem Biol; 2020 Apr; 15(4):962-969. PubMed ID: 32203656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Investigation of the Binding of MCoTI-II Plant Defense Knottin to the γ-NGF Serine Protease of the 7S Nerve Growth Factor Complex and Biological Activity of Its NGF Mimetic Properties.
    Jones PM; Mazzio E; Soliman K; George AM
    J Phys Chem B; 2019 Oct; 123(43):9104-9110. PubMed ID: 31580077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro and In Planta Cyclization of Target Peptides Using an Asparaginyl Endopeptidase from Oldenlandia affinis.
    Harris KS; Poon S; Quimbar P; Anderson MA
    Methods Mol Biol; 2019; 2012():211-235. PubMed ID: 31161511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A.
    Stanger K; Maurer T; Kaluarachchi H; Coons M; Franke Y; Hannoush RN
    FEBS Lett; 2014 Nov; 588(23):4487-96. PubMed ID: 25448598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-affinity cyclic peptide matriptase inhibitors.
    Quimbar P; Malik U; Sommerhoff CP; Kaas Q; Chan LY; Huang YH; Grundhuber M; Dunse K; Craik DJ; Anderson MA; Daly NL
    J Biol Chem; 2013 May; 288(19):13885-96. PubMed ID: 23548907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery and Characterization of Cyclic and Acyclic Trypsin Inhibitors from Momordica dioica.
    Du J; Chan LY; Poth AG; Craik DJ
    J Nat Prod; 2019 Feb; 82(2):293-300. PubMed ID: 30673219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide macrocyclization by a bifunctional endoprotease.
    Bernath-Levin K; Nelson C; Elliott AG; Jayasena AS; Millar AH; Craik DJ; Mylne JS
    Chem Biol; 2015 May; 22(5):571-82. PubMed ID: 25960260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.