These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 22823179)
1. Sulfate-reducing bacteria lower sulfur-mediated pitting corrosion under conditions of oxygen ingress. Johnston SL; Voordouw G Environ Sci Technol; 2012 Aug; 46(16):9183-90. PubMed ID: 22823179 [TBL] [Abstract][Full Text] [Related]
2. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Enning D; Venzlaff H; Garrelfs J; Dinh HT; Meyer V; Mayrhofer K; Hassel AW; Stratmann M; Widdel F Environ Microbiol; 2012 Jul; 14(7):1772-87. PubMed ID: 22616633 [TBL] [Abstract][Full Text] [Related]
3. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H; Odagiri M; Ito T; Okabe S Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714 [TBL] [Abstract][Full Text] [Related]
4. Corrosion risk associated with microbial souring control using nitrate or nitrite. Hubert C; Nemati M; Jenneman G; Voordouw G Appl Microbiol Biotechnol; 2005 Aug; 68(2):272-82. PubMed ID: 15711941 [TBL] [Abstract][Full Text] [Related]
5. Comparison of microbial communities involved in souring and corrosion in offshore and onshore oil production facilities in Nigeria. Okoro C; Smith S; Chiejina L; Lumactud R; An D; Park HS; Voordouw J; Lomans BP; Voordouw G J Ind Microbiol Biotechnol; 2014 Apr; 41(4):665-78. PubMed ID: 24477567 [TBL] [Abstract][Full Text] [Related]
6. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples. Voordouw G; Menon P; Pinnock T; Sharma M; Shen Y; Venturelli A; Voordouw J; Sexton A Front Microbiol; 2016; 7():351. PubMed ID: 27047467 [TBL] [Abstract][Full Text] [Related]
7. Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study. Rajala P; Cheng DQ; Rice SA; Lauro FM Microbiome; 2022 Jan; 10(1):4. PubMed ID: 35027090 [TBL] [Abstract][Full Text] [Related]
8. Study on mechanism underlying the acceleration of pitting corrosion of B30 copper-nickel alloy by sulfate-reducing bacteria in seawater. Wang J; Li H; Du M; Sun M; Ma L Sci Total Environ; 2024 Jun; 928():172645. PubMed ID: 38643520 [TBL] [Abstract][Full Text] [Related]
9. Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulfate-reducing bacteria. Pedersen K J Appl Microbiol; 2010 Mar; 108(3):1094-1104. PubMed ID: 20015208 [TBL] [Abstract][Full Text] [Related]
10. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Enning D; Garrelfs J Appl Environ Microbiol; 2014 Feb; 80(4):1226-36. PubMed ID: 24317078 [TBL] [Abstract][Full Text] [Related]
11. Synergistic effect of alternating current and sulfate-reducing bacteria on corrosion behavior of X80 steel in coastal saline soil. Qin Q; Xu J; Wei B; Fu Q; Gao L; Yu C; Sun C; Wang Z Bioelectrochemistry; 2021 Dec; 142():107911. PubMed ID: 34364027 [TBL] [Abstract][Full Text] [Related]
12. Identification of the traditional and non-traditional sulfate-reducing bacteria associated with corroded ship hull. Alasvand Zarasvand K; Ravishankar Rai V 3 Biotech; 2016 Dec; 6(2):197. PubMed ID: 28330269 [TBL] [Abstract][Full Text] [Related]
13. The use of magnesium peroxide for the inhibition of sulfate-reducing bacteria under anoxic conditions. Chang YJ; Chang YT; Hung CH J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1481-91. PubMed ID: 18712535 [TBL] [Abstract][Full Text] [Related]
14. Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin. Westphal A; Lerm S; Miethling-Graff R; Seibt A; Wolfgramm M; Würdemann H Appl Microbiol Biotechnol; 2016 Apr; 100(7):3277-90. PubMed ID: 26610802 [TBL] [Abstract][Full Text] [Related]
15. Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition. Xu XJ; Chen C; Wang AJ; Fang N; Yuan Y; Ren NQ; Lee DJ Bioresour Technol; 2012 Jul; 116():517-21. PubMed ID: 22591695 [TBL] [Abstract][Full Text] [Related]
16. Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes. Dou W; Pu Y; Han X; Song Y; Chen S; Gu T Bioelectrochemistry; 2020 Jun; 133():107478. PubMed ID: 32036296 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Xu D; Li Y; Gu T Bioelectrochemistry; 2016 Aug; 110():52-8. PubMed ID: 27071053 [TBL] [Abstract][Full Text] [Related]
18. Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria. Liu H; Cheng YF Colloids Surf B Biointerfaces; 2020 Jun; 190():110899. PubMed ID: 32120127 [TBL] [Abstract][Full Text] [Related]
20. Modeling of heavy nitrate corrosion in anaerobe aquifer injection water biofilm: a case study in a flow rig. Drønen K; Roalkvam I; Beeder J; Torsvik T; Steen IH; Skauge A; Liengen T Environ Sci Technol; 2014; 48(15):8627-35. PubMed ID: 25020005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]