These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 22823342)
1. Enantio- and regioselective epoxidation of olefinic double bonds in quinolones, pyridones, and amides catalyzed by a ruthenium porphyrin catalyst with a hydrogen bonding site. Fackler P; Huber SM; Bach T J Am Chem Soc; 2012 Aug; 134(30):12869-78. PubMed ID: 22823342 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen-bond-mediated enantio- and regioselectivity in a Ru-catalyzed epoxidation reaction. Fackler P; Berthold C; Voss F; Bach T J Am Chem Soc; 2010 Nov; 132(45):15911-3. PubMed ID: 20977222 [TBL] [Abstract][Full Text] [Related]
3. Enantioselective intramolecular [2 + 2]-photocycloaddition reactions of 4-substituted quinolones catalyzed by a chiral sensitizer with a hydrogen-bonding motif. Müller C; Bauer A; Maturi MM; Cuquerella MC; Miranda MA; Bach T J Am Chem Soc; 2011 Oct; 133(41):16689-97. PubMed ID: 21955005 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study of photoinduced epoxidation of olefins catalyzed by ruthenium porphyrin. Ishikawa A; Sakaki S J Phys Chem A; 2011 May; 115(18):4774-85. PubMed ID: 21495703 [TBL] [Abstract][Full Text] [Related]
5. Electronically tuned chiral ruthenium porphyrins: extremely stable and selective catalysts for asymmetric epoxidation and cyclopropanation. Berkessel A; Kaiser P; Lex J Chemistry; 2003 Oct; 9(19):4746-56. PubMed ID: 14566882 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient asymmetric epoxidation of alkenes with a D(4)-symmetric chiral dichlororuthenium(IV) porphyrin catalyst. Zhang R; Yu WY; Wong KY; Che CM J Org Chem; 2001 Nov; 66(24):8145-53. PubMed ID: 11722218 [TBL] [Abstract][Full Text] [Related]
7. cis-Beta-bis(carbonyl) ruthenium-salen complexes: X-ray crystal structures and remarkable catalytic properties toward asymmetric intramolecular alkene cyclopropanation. Xu ZJ; Fang R; Zhao C; Huang JS; Li GY; Zhu N; Che CM J Am Chem Soc; 2009 Apr; 131(12):4405-17. PubMed ID: 19275149 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic iron-catalyzed asymmetric epoxidation of aromatic alkenes by using hydrogen peroxide. Gelalcha FG; Anilkumar G; Tse MK; Brückner A; Beller M Chemistry; 2008; 14(25):7687-98. PubMed ID: 18567024 [TBL] [Abstract][Full Text] [Related]
9. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. Sharma PK; De Visser SP; Ogliaro F; Shaik S J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. Stare J; Henson NJ; Eckert J J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473 [TBL] [Abstract][Full Text] [Related]
12. Lactam Hydrogen Bonds as Control Elements in Enantioselective Transition-Metal-Catalyzed and Photochemical Reactions. Burg F; Bach T J Org Chem; 2019 Jul; 84(14):8815-8836. PubMed ID: 31181155 [TBL] [Abstract][Full Text] [Related]
13. Ruthenium-catalyzed asymmetric epoxidation of olefins using H2O2, part II: catalytic activities and mechanism. Tse MK; Bhor S; Klawonn M; Anilkumar G; Jiao H; Spannenberg A; Döbler C; Mägerlein W; Hugl H; Beller M Chemistry; 2006 Feb; 12(7):1875-88. PubMed ID: 16432912 [TBL] [Abstract][Full Text] [Related]
14. Strategy for enantio- and diastereoselective syntheses of all possible stereoisomers of 1,3-polyol arrays based on a highly catalyst-controlled epoxidation of alpha,beta-unsaturated morpholinyl amides: application to natural product synthesis. Tosaki SY; Horiuchi Y; Nemoto T; Ohshima T; Shibasaki M Chemistry; 2004 Mar; 10(6):1527-44. PubMed ID: 15034897 [TBL] [Abstract][Full Text] [Related]
15. Computational investigation on the mechanism and stereochemistry of guanidine-catalyzed enantioselective isomerization of 3-alkynoates to allenoates. Huang D; Qin S; Hu C Org Biomol Chem; 2011 Sep; 9(17):6034-9. PubMed ID: 21766134 [TBL] [Abstract][Full Text] [Related]
16. Enantiotopos-selective C-H oxygenation catalyzed by a supramolecular ruthenium complex. Frost JR; Huber SM; Breitenlechner S; Bannwarth C; Bach T Angew Chem Int Ed Engl; 2015 Jan; 54(2):691-5. PubMed ID: 25413591 [TBL] [Abstract][Full Text] [Related]
17. Enantioselective construction of 2,3-dihydrofuro[2,3-b]quinolines through supramolecular hydrogen bonding interactions. Zhong F; Bach T Chemistry; 2014 Oct; 20(42):13522-6. PubMed ID: 25196199 [TBL] [Abstract][Full Text] [Related]
18. DFT study of chiral-phosphoric-acid-catalyzed enantioselective Friedel-Crafts reaction of indole with nitroalkene: bifunctionality and substituent effect of phosphoric acid. Hirata T; Yamanaka M Chem Asian J; 2011 Feb; 6(2):510-6. PubMed ID: 21254429 [TBL] [Abstract][Full Text] [Related]
19. A Chiral Phenanthroline Ligand with a Hydrogen-Bonding Site: Application to the Enantioselective Amination of Methylene Groups. Annapureddy RR; Jandl C; Bach T J Am Chem Soc; 2020 Apr; 142(16):7374-7378. PubMed ID: 32255621 [TBL] [Abstract][Full Text] [Related]
20. Computational study of the factors controlling enantioselectivity in ruthenium(II) hydrogenation catalysts. Di Tommaso D; French SA; Zanotti-Gerosa A; Hancock F; Palin EJ; Catlow CR Inorg Chem; 2008 Apr; 47(7):2674-87. PubMed ID: 18318476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]