These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 22823934)
1. A microarray analysis of gnotobiotic mice indicating that microbial exposure during the neonatal period plays an essential role in immune system development. Yamamoto M; Yamaguchi R; Munakata K; Takashima K; Nishiyama M; Hioki K; Ohnishi Y; Nagasaki M; Imoto S; Miyano S; Ishige A; Watanabe K BMC Genomics; 2012 Jul; 13():335. PubMed ID: 22823934 [TBL] [Abstract][Full Text] [Related]
2. Importance of the interferon-alpha system in murine large intestine indicated by microarray analysis of commensal bacteria-induced immunological changes. Munakata K; Yamamoto M; Anjiki N; Nishiyama M; Imamura S; Iizuka S; Takashima K; Ishige A; Hioki K; Ohnishi Y; Watanabe K BMC Genomics; 2008 Apr; 9():192. PubMed ID: 18439305 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets. Chowdhury SR; King DE; Willing BP; Band MR; Beever JE; Lane AB; Loor JJ; Marini JC; Rund LA; Schook LB; Van Kessel AG; Gaskins HR BMC Genomics; 2007 Jul; 8():215. PubMed ID: 17615075 [TBL] [Abstract][Full Text] [Related]
4. Gene expression profiles of germ-free and conventional piglets from the same litter. Sun J; Zhong H; Du L; Li X; Ding Y; Cao H; Liu Z; Ge L Sci Rep; 2018 Jul; 8(1):10745. PubMed ID: 30013139 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome analysis reveals regional and temporal differences in mucosal immune system development in the small intestine of neonatal calves. Liang G; Malmuthuge N; Bao H; Stothard P; Griebel PJ; Guan le L BMC Genomics; 2016 Aug; 17(1):602. PubMed ID: 27515123 [TBL] [Abstract][Full Text] [Related]
7. Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. Bergström A; Kristensen MB; Bahl MI; Metzdorff SB; Fink LN; Frøkiaer H; Licht TR BMC Res Notes; 2012 Aug; 5():402. PubMed ID: 22857743 [TBL] [Abstract][Full Text] [Related]
8. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. Hrncir T; Stepankova R; Kozakova H; Hudcovic T; Tlaskalova-Hogenova H BMC Immunol; 2008 Nov; 9():65. PubMed ID: 18990206 [TBL] [Abstract][Full Text] [Related]
9. Tissue-specific mRNA expression profiles of porcine Toll-like receptors at different ages in germ-free and conventional pigs. Shao L; Fischer DD; Kandasamy S; Saif LJ; Vlasova AN Vet Immunol Immunopathol; 2016 Mar; 171():7-16. PubMed ID: 26964712 [TBL] [Abstract][Full Text] [Related]
10. Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. Cresci GA; Thangaraju M; Mellinger JD; Liu K; Ganapathy V J Gastrointest Surg; 2010 Mar; 14(3):449-61. PubMed ID: 20033346 [TBL] [Abstract][Full Text] [Related]
11. Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. Willing BP; Van Kessel AG J Anim Sci; 2007 Dec; 85(12):3256-66. PubMed ID: 17785595 [TBL] [Abstract][Full Text] [Related]
12. Patterns of early gut colonization shape future immune responses of the host. Hansen CH; Nielsen DS; Kverka M; Zakostelska Z; Klimesova K; Hudcovic T; Tlaskalova-Hogenova H; Hansen AK PLoS One; 2012; 7(3):e34043. PubMed ID: 22479515 [TBL] [Abstract][Full Text] [Related]
13. Effects of the commensal microbiota on spleen and mesenteric lymph node immune function: investigation in a germ-free piglet model. Liu Y; Zhang J; Yang G; Tang C; Li X; Lu L; Long K; Sun J; Ding Y; Li X; Li M; Ge L; Ma J Front Microbiol; 2024; 15():1398631. PubMed ID: 38933022 [TBL] [Abstract][Full Text] [Related]
14. Gnotobiotic IL-10-/-;NF-kappa B(EGFP) mice reveal the critical role of TLR/NF-kappa B signaling in commensal bacteria-induced colitis. Karrasch T; Kim JS; Muhlbauer M; Magness ST; Jobin C J Immunol; 2007 May; 178(10):6522-32. PubMed ID: 17475882 [TBL] [Abstract][Full Text] [Related]
15. Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Lundin A; Bok CM; Aronsson L; Björkholm B; Gustafsson JA; Pott S; Arulampalam V; Hibberd M; Rafter J; Pettersson S Cell Microbiol; 2008 May; 10(5):1093-103. PubMed ID: 18088401 [TBL] [Abstract][Full Text] [Related]
16. Effects of commensal bacteria on intestinal morphology and expression of proinflammatory cytokines in the gnotobiotic pig. Shirkey TW; Siggers RH; Goldade BG; Marshall JK; Drew MD; Laarveld B; Van Kessel AG Exp Biol Med (Maywood); 2006 Sep; 231(8):1333-45. PubMed ID: 16946402 [TBL] [Abstract][Full Text] [Related]
17. Restraint stress elevates the plasma interleukin-6 levels in germ-free mice. Nukina H; Sudo N; Aiba Y; Oyama N; Koga Y; Kubo C J Neuroimmunol; 2001 Apr; 115(1-2):46-52. PubMed ID: 11282153 [TBL] [Abstract][Full Text] [Related]
18. Host gene expression in the colon of gnotobiotic interleukin-2-deficient mice colonized with commensal colitogenic or noncolitogenic bacterial strains: common patterns and bacteria strain specific signatures. Bohn E; Bechtold O; Zahir N; Frick JS; Reimann J; Jilge B; Autenrieth IB Inflamm Bowel Dis; 2006 Sep; 12(9):853-62. PubMed ID: 16954804 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of rat intestinal lamina propria cells: consequences of microbial colonization. Woolverton CJ; Holt LC; Mitchell D; Sartor RB Vet Immunol Immunopathol; 1992 Oct; 34(1-2):127-38. PubMed ID: 1441222 [TBL] [Abstract][Full Text] [Related]
20. Functional genomic studies of the intestinal response to a foodborne enteropathogen in a humanized gnotobiotic mouse model. Lecuit M; Sonnenburg JL; Cossart P; Gordon JI J Biol Chem; 2007 May; 282(20):15065-72. PubMed ID: 17389602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]