These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22824432)

  • 1. Post-lanosterol biosynthesis of cholesterol and cancer.
    Lasunción MA; Martín-Sánchez C; Canfrán-Duque A; Busto R
    Curr Opin Pharmacol; 2012 Dec; 12(6):717-23. PubMed ID: 22824432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol and prostate cancer.
    Freeman MR; Solomon KR
    J Cell Biochem; 2004 Jan; 91(1):54-69. PubMed ID: 14689582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol metabolism and cancer: the good, the bad and the ugly.
    Silvente-Poirot S; Poirot M
    Curr Opin Pharmacol; 2012 Dec; 12(6):673-6. PubMed ID: 23103112
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of cholesterol in prostate cancer.
    Hager MH; Solomon KR; Freeman MR
    Curr Opin Clin Nutr Metab Care; 2006 Jul; 9(4):379-85. PubMed ID: 16778565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts.
    Kiyan J; Smith G; Haller H; Dumler I
    Biochem J; 2009 Oct; 423(3):343-51. PubMed ID: 19691446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines.
    Palmer CP; Mahen R; Schnell E; Djamgoz MB; Aydar E
    Cancer Res; 2007 Dec; 67(23):11166-75. PubMed ID: 18056441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer.
    Staubach S; Hanisch FG
    Expert Rev Proteomics; 2011 Apr; 8(2):263-77. PubMed ID: 21501018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sterol stringency of proliferation and cell cycle progression in human cells.
    Suárez Y; Fernández C; Ledo B; Martín M; Gómez-Coronado D; Lasunción MA
    Biochim Biophys Acta; 2005 May; 1734(2):203-13. PubMed ID: 15904877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for effective and safe removal of membrane cholesterol from lipid rafts in vascular endothelial cells: implications in oxidant-mediated lipid signaling.
    Kline MA; O'Connor Butler ES; Hinzey A; Sliman S; Kotha SR; Marsh CB; Uppu RM; Parinandi NL
    Methods Mol Biol; 2010; 610():201-11. PubMed ID: 20013180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction.
    Kamata K; Manno S; Ozaki M; Takakuwa Y
    Am J Hematol; 2008 May; 83(5):371-5. PubMed ID: 18181202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes.
    Bang B; Gniadecki R; Gajkowska B
    Exp Dermatol; 2005 Apr; 14(4):266-72. PubMed ID: 15810884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-bound enzymes of cholesterol synthesis from lanosterol.
    Gaylor JL
    Biochem Biophys Res Commun; 2002 Apr; 292(5):1139-46. PubMed ID: 11969204
    [No Abstract]   [Full Text] [Related]  

  • 13. Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction.
    Oh HY; Lee EJ; Yoon S; Chung BH; Cho KS; Hong SJ
    Prostate; 2007 Jul; 67(10):1061-9. PubMed ID: 17469127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rafts in oligodendrocytes: evidence and structure-function relationship.
    Gielen E; Baron W; Vandeven M; Steels P; Hoekstra D; Ameloot M
    Glia; 2006 Nov; 54(6):499-512. PubMed ID: 16927294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for the study of signaling molecules in membrane lipid rafts and caveolae.
    Ostrom RS; Insel PA
    Methods Mol Biol; 2006; 332():181-91. PubMed ID: 16878693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin-like growth factor-1 receptor signaling in 3T3-L1 adipocyte differentiation requires lipid rafts but not caveolae.
    Hong S; Huo H; Xu J; Liao K
    Cell Death Differ; 2004 Jul; 11(7):714-23. PubMed ID: 15002041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the rate-determining microsomal reaction of cholesterol biosynthesis from lanosterol in Morris hepatomas and liver.
    Williams MT; Gaylor JL; Morris HP
    Cancer Res; 1977 May; 37(5):1377-83. PubMed ID: 192449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by 3 beta-hydroxy-lanost-8-en-32-al, an intermediate in the conversion of lanosterol to cholesterol.
    Leonard DA; Kotarski MA; Tessiatore JE; Favata MF; Trzaskos JM
    Arch Biochem Biophys; 1994 Apr; 310(1):152-7. PubMed ID: 8161198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sigma-1 receptors potentiate epidermal growth factor signaling towards neuritogenesis in PC12 cells: potential relation to lipid raft reconstitution.
    Takebayashi M; Hayashi T; Su TP
    Synapse; 2004 Aug; 53(2):90-103. PubMed ID: 15170821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of the kappa opioid receptor in lipid rafts.
    Xu W; Yoon SI; Huang P; Wang Y; Chen C; Chong PL; Liu-Chen LY
    J Pharmacol Exp Ther; 2006 Jun; 317(3):1295-306. PubMed ID: 16505160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.