BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22824538)

  • 1. Vision-guided ocular growth in a mutant chicken model with diminished visual acuity.
    Ritchey ER; Zelinka C; Tang J; Liu J; Code KA; Petersen-Jones S; Fischer AJ
    Exp Eye Res; 2012 Sep; 102():59-69. PubMed ID: 22824538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin acts as a powerful stimulator of axial myopia in chicks.
    Feldkaemper MP; Neacsu I; Schaeffel F
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):13-23. PubMed ID: 18599564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal integration of visual signals in lens compensation (a review).
    Zhu X
    Exp Eye Res; 2013 Sep; 114():69-76. PubMed ID: 23470505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a myopiagenic stimulus in tree shrew eyes.
    Norton TT; Siegwart JT; Amedo AO
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4687-99. PubMed ID: 17065475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myopic defocus in the evening is more effective at inhibiting eye growth than defocus in the morning: Effects on rhythms in axial length and choroid thickness in chicks.
    Nickla DL; Thai P; Zanzerkia Trahan R; Totonelly K
    Exp Eye Res; 2017 Jan; 154():104-115. PubMed ID: 27845062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal integration characteristics of the axial and choroidal responses to myopic defocus induced by prior form deprivation versus positive spectacle lens wear in chickens.
    Nickla DL; Sharda V; Troilo D
    Optom Vis Sci; 2005 Apr; 82(4):318-27. PubMed ID: 15829859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient increases in choroidal thickness are consistently associated with brief daily visual stimuli that inhibit ocular growth in chicks.
    Nickla DL
    Exp Eye Res; 2007 May; 84(5):951-9. PubMed ID: 17395180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of brief high intensity light on ocular growth in chicks developing myopia vary with time of day.
    Sarfare S; Yang J; Nickla DL
    Exp Eye Res; 2020 Jun; 195():108039. PubMed ID: 32339518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in chick.
    Tse DY; To CH
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8056-62. PubMed ID: 21911586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the time of day on axial length and choroidal thickness changes to hyperopic and myopic defocus in human eyes.
    Moderiano D; Do M; Hobbs S; Lam V; Sarin S; Alonso-Caneiro D; Chakraborty R
    Exp Eye Res; 2019 May; 182():125-136. PubMed ID: 30926510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brief hyperopic defocus or form deprivation have varying effects on eye growth and ocular rhythms depending on the time-of-day of exposure.
    Nickla DL; Jordan K; Yang J; Totonelly K
    Exp Eye Res; 2017 Aug; 161():132-142. PubMed ID: 28596085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys.
    Hung LF; Arumugam B; She Z; Ostrin L; Smith EL
    Exp Eye Res; 2018 Nov; 176():147-160. PubMed ID: 29981345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous defocus integration during refractive development.
    Tse DY; Lam CS; Guggenheim JA; Lam C; Li KK; Liu Q; To CH
    Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5352-9. PubMed ID: 18055781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucagon- and secretin-related peptides differentially alter ocular growth and the development of form-deprivation myopia in chicks.
    Vessey KA; Rushforth DA; Stell WK
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):3932-42. PubMed ID: 16249466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucagon receptor agonists and antagonists affect the growth of the chick eye: a role for glucagonergic regulation of emmetropization?
    Vessey KA; Lencses KA; Rushforth DA; Hruby VJ; Stell WK
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):3922-31. PubMed ID: 16249465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of local myopic defocus on refractive development in monkeys.
    Smith EL; Hung LF; Huang J; Arumugam B
    Optom Vis Sci; 2013 Nov; 90(11):1176-86. PubMed ID: 24061154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus requirements for the decoding of myopic and hyperopic defocus under single and competing defocus conditions in the chicken.
    Diether S; Wildsoet CF
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2242-52. PubMed ID: 15980207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potency of myopic defocus in spectacle lens compensation.
    Zhu X; Winawer JA; Wallman J
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):2818-27. PubMed ID: 12824218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of cone mediated retinal function increases susceptibility to form-deprivation myopia in mice.
    Chakraborty R; Yang V; Park HN; Landis EG; Dhakal S; Motz CT; Bergen MA; Iuvone PM; Pardue MT
    Exp Eye Res; 2019 Mar; 180():226-230. PubMed ID: 30605665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZENK expression of retinal glucagon amacrine cells in chicks: the effect of defocus presented in vivo, in vitro and under anesthesia.
    Bitzer M; Schaeffel F
    Vision Res; 2006 Mar; 46(6-7):848-59. PubMed ID: 16289273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.