These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 22824899)
1. Dissecting the mechanisms of a class of chemical glycosylation using primary ¹³C kinetic isotope effects. Huang M; Garrett GE; Birlirakis N; Bohé L; Pratt DA; Crich D Nat Chem; 2012 Jul; 4(8):663-7. PubMed ID: 22824899 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of a chemical glycosylation reaction. Crich D Acc Chem Res; 2010 Aug; 43(8):1144-53. PubMed ID: 20496888 [TBL] [Abstract][Full Text] [Related]
3. Dissecting the Essential Role of Anomeric β-Triflates in Glycosylation Reactions. Santana AG; Montalvillo-Jiménez L; Díaz-Casado L; Corzana F; Merino P; Cañada FJ; Jiménez-Osés G; Jiménez-Barbero J; Gómez AM; Asensio JL J Am Chem Soc; 2020 Jul; 142(28):12501-12514. PubMed ID: 32579343 [TBL] [Abstract][Full Text] [Related]
4. Cation clock permits distinction between the mechanisms of α- and β-O- and β-C-glycosylation in the mannopyranose series: evidence for the existence of a mannopyranosyl oxocarbenium ion. Huang M; Retailleau P; Bohé L; Crich D J Am Chem Soc; 2012 Sep; 134(36):14746-9. PubMed ID: 22920536 [TBL] [Abstract][Full Text] [Related]
5. Cation Clock Reactions for the Determination of Relative Reaction Kinetics in Glycosylation Reactions: Applications to Gluco- and Mannopyranosyl Sulfoxide and Trichloroacetimidate Type Donors. Adero PO; Furukawa T; Huang M; Mukherjee D; Retailleau P; Bohé L; Crich D J Am Chem Soc; 2015 Aug; 137(32):10336-45. PubMed ID: 26207807 [TBL] [Abstract][Full Text] [Related]
6. Solid-state NMR spectroscopic analysis of the Ca2+-dependent mannose binding of pradimicin A. Nakagawa Y; Masuda Y; Yamada K; Doi T; Takegoshi K; Igarashi Y; Ito Y Angew Chem Int Ed Engl; 2011 Jun; 50(27):6084-8. PubMed ID: 21598364 [No Abstract] [Full Text] [Related]
8. Sensitive and Accurate Kwan EE; Park Y; Besser HA; Anderson TL; Jacobsen EN J Am Chem Soc; 2017 Jan; 139(1):43-46. PubMed ID: 28005341 [TBL] [Abstract][Full Text] [Related]
9. The Experimental Evidence in Support of Glycosylation Mechanisms at the S Adero PO; Amarasekara H; Wen P; Bohé L; Crich D Chem Rev; 2018 Sep; 118(17):8242-8284. PubMed ID: 29846062 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of 4,6-O-benzylidene-directed beta-mannosylation as determined by alpha-deuterium kinetic isotope effects. Crich D; Chandrasekera NS Angew Chem Int Ed Engl; 2004 Oct; 43(40):5386-9. PubMed ID: 15468095 [No Abstract] [Full Text] [Related]
11. Stereoselective C-glycosylation reactions of pyranoses: the conformational preference and reactions of the mannosyl cation. Lucero CG; Woerpel KA J Org Chem; 2006 Mar; 71(7):2641-7. PubMed ID: 16555815 [TBL] [Abstract][Full Text] [Related]
12. Influence of protecting groups on the reactivity and selectivity of glycosylation: chemistry of the 4,6-o-benzylidene protected mannopyranosyl donors and related species. Aubry S; Sasaki K; Sharma I; Crich D Top Curr Chem; 2011; 301():141-88. PubMed ID: 21240602 [TBL] [Abstract][Full Text] [Related]
13. Influence of the O3 protecting group on stereoselectivity in the preparation of C-mannopyranosides with 4,6-O-benzylidene protected donors. Crich D; Sharma I J Org Chem; 2010 Dec; 75(24):8383-91. PubMed ID: 21070063 [TBL] [Abstract][Full Text] [Related]
14. Probing the transition states of four glucoside hydrolyses with 13C kinetic isotope effects measured at natural abundance by NMR spectroscopy. Lee JK; Bain AD; Berti PJ J Am Chem Soc; 2004 Mar; 126(12):3769-76. PubMed ID: 15038730 [TBL] [Abstract][Full Text] [Related]
15. Glycosylation States on Intact Proteins Determined by NMR Spectroscopy. Hargett AA; Marcella AM; Yu H; Li C; Orwenyo J; Battistel MD; Wang LX; Freedberg DI Molecules; 2021 Jul; 26(14):. PubMed ID: 34299586 [TBL] [Abstract][Full Text] [Related]
16. Matching Glycosyl Donor Reactivity to Sulfonate Leaving Group Ability Permits S Zhuo MH; Wilbur DJ; Kwan EE; Bennett CS J Am Chem Soc; 2019 Oct; 141(42):16743-16754. PubMed ID: 31550879 [TBL] [Abstract][Full Text] [Related]
17. Reactions of phenyl and ethyl 2-O-sulfonyl-1-thio-alpha-D-manno- and beta-D-glucopyranosides with thionucleophiles. Lipták A; Lázár L; Borbás A; Antus S Carbohydr Res; 2009 Dec; 344(18):2461-7. PubMed ID: 19853244 [TBL] [Abstract][Full Text] [Related]
18. Glycoprotein biosynthesis: studies on thyroid mannosyltransferases. II. Characterization of a polyisoprenyl mannosyl phosphate and evaluation of its intermediary role in the glycosylation of exogenous acceptors. Adamany AM; Spiro RG J Biol Chem; 1975 Apr; 250(8):2842-54. PubMed ID: 16509041 [TBL] [Abstract][Full Text] [Related]
19. Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from cellulomonas fimi. Zechel DL; Reid SP; Stoll D; Nashiru O; Warren RA; Withers SG Biochemistry; 2003 Jun; 42(23):7195-204. PubMed ID: 12795616 [TBL] [Abstract][Full Text] [Related]
20. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements. Ying J; Grishaev A; Bryce DL; Bax A J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]