These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22825164)

  • 1. Single-fiber diffuse optical time-of-flight spectroscopy.
    Alerstam E; Svensson T; Andersson-Engels S; Spinelli L; Contini D; Dalla Mora A; Tosi A; Zappa F; Pifferi A
    Opt Lett; 2012 Jul; 37(14):2877-9. PubMed ID: 22825164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode.
    Bargigia I; Tosi A; Bahgat Shehata A; Della Frera A; Farina A; Bassi A; Taroni P; Dalla Mora A; Zappa F; Cubeddu R; Pifferi A
    Appl Spectrosc; 2012 Aug; 66(8):944-50. PubMed ID: 22800436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse Monte Carlo for estimation of scattering and absorption in liquid optical phantoms.
    Karlsson H; Fredriksson I; Larsson M; Strömberg T
    Opt Express; 2012 May; 20(11):12233-46. PubMed ID: 22714213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method.
    Bouchard JP; Veilleux I; Jedidi R; Noiseux I; Fortin M; Mermut O
    Opt Express; 2010 May; 18(11):11495-507. PubMed ID: 20589010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study.
    Sung KB; Chen HH
    J Biomed Opt; 2012 Oct; 17(10):107003. PubMed ID: 23047254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe.
    Yu B; Fu H; Bydlon T; Bender JE; Ramanujam N
    Opt Lett; 2008 Aug; 33(16):1783-5. PubMed ID: 18709086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of optical properties by interstitial white light spectroscopy using a custom fiber optic probe.
    Baran TM; Fenn MC; Foster TH
    J Biomed Opt; 2013 Oct; 18(10):107007. PubMed ID: 24150093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of regional hemoglobin concentration in biological tissues using diffuse reflectance spectroscopy with a novel spectral interpretation algorithm.
    Chen P; Fernald B; Lin W
    Phys Med Biol; 2011 Jul; 56(13):3985-4000. PubMed ID: 21666291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards accurate in vivo spectroscopy of the human prostate.
    Svensson T; Alerstam E; Einarsdóttír M; Svanberg K; Andersson-Engels S
    J Biophotonics; 2008 Aug; 1(3):200-3. PubMed ID: 19412969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: South African skin phototypes.
    Karsten AE; Singh A; Karsten PA; Braun MW
    Photochem Photobiol; 2013; 89(1):227-33. PubMed ID: 22891856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subdiffuse scattering model for single fiber reflectance spectroscopy.
    Post AL; Sterenborg HJCM; Woltjer FG; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2020 Jan; 25(1):1-11. PubMed ID: 31920047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers.
    Firstov SV; Khopin VF; Bufetov IA; Firstova EG; Guryanov AN; Dianov EM
    Opt Express; 2011 Sep; 19(20):19551-61. PubMed ID: 21996896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber.
    Diamond KR; Patterson MS; Farrell TJ
    Appl Opt; 2003 May; 42(13):2436-42. PubMed ID: 12737480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interstitial null-distance time-domain diffuse optical spectroscopy using a superconducting nanowire detector.
    Damagatla V; Lanka P; Brodu A; Noordzij N; Qin-Dregely J; Farina A; Pifferi A
    J Biomed Opt; 2023 Dec; 28(12):121202. PubMed ID: 37021124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [An optical method for investigation of thickness of damaged articular cartilage].
    Karagöl C; Aydin AT; Gür S; Denkçeken T; Canpolat M
    Eklem Hastalik Cerrahisi; 2010 Aug; 21(2):104-9. PubMed ID: 20632927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy.
    Hass R; Munzke D; Ruiz SV; Tippmann J; Reich O
    Anal Bioanal Chem; 2015 Apr; 407(10):2791-802. PubMed ID: 25725578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study.
    Zhu C; Liu Q
    Opt Express; 2011 Aug; 19(18):17799-812. PubMed ID: 21935148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A versatile fiber-optic coupled system for sensitive optical spectroscopy in strong ambient light.
    Sinha SS; Verma PK; Makhal A; Pal SK
    Rev Sci Instrum; 2009 May; 80(5):053109. PubMed ID: 19485494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved reflectance spectroscopy in turbid tissues.
    Jacques SL
    IEEE Trans Biomed Eng; 1989 Dec; 36(12):1155-61. PubMed ID: 2606489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.