These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22825165)

  • 21. Improved near-field calculations using vectorial diffraction integrals in the finite-difference time-domain method.
    Coe RL; Sebiel EJ
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1776-83. PubMed ID: 21811341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra.
    Mullin J; Schatz GC
    J Phys Chem A; 2012 Mar; 116(8):1931-8. PubMed ID: 22283122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An object-oriented designed finite-difference time-domain simulator for electromagnetic analysis and design in MRI--applications to high field analyses.
    Wei Q; Liu F; Xia L; Crozier S
    J Magn Reson; 2005 Feb; 172(2):222-30. PubMed ID: 15649749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiative and nonradiative decay rates in chromium-related centers in nanodiamonds.
    Castelletto S; Boretti A
    Opt Lett; 2011 Nov; 36(21):4224-6. PubMed ID: 22048372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam.
    Kitamura K; Sakai K; Noda S
    Opt Express; 2011 Jul; 19(15):13750-6. PubMed ID: 21934735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light scattering, field localization and local density of states in co-axial plasmonic nanowires.
    Lawrence N; Dal Negro L
    Opt Express; 2010 Jul; 18(15):16120-32. PubMed ID: 20720997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite-difference time-domain and near-field-to-far-field transformation in the spectral domain: application to scattering objects with complex shapes in the vicinity of a semi-infinite dielectric medium.
    Muller J; Parent G; Jeandel G; Lacroix D
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):868-78. PubMed ID: 21532699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exact field solution to guided wave propagation in lossy thin films.
    Nagel JR; Blair S; Scarpulla MA
    Opt Express; 2011 Oct; 19(21):20159-71. PubMed ID: 21997027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of an efficient single photon source from a metallic nanorod dimer: a quasi-normal mode finite-difference time-domain approach.
    Ge RC; Hughes S
    Opt Lett; 2014 Jul; 39(14):4235-8. PubMed ID: 25121695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generalized approach to quantum interference in lossy N-port devices via a singular value decomposition.
    Hernández O; Liberal I
    Opt Express; 2022 Aug; 30(17):31267-31286. PubMed ID: 36242213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topology optimization of dispersive plasmonic nanostructures in the time-domain.
    Hassan E; CalĂ  Lesina A
    Opt Express; 2022 May; 30(11):19557-19572. PubMed ID: 36221729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency-domain modelling of gain in pump-probe experiment by an inhomogeneous medium.
    Kim M; Oh SS; Hess O; Rho J
    J Phys Condens Matter; 2018 Feb; 30(6):064003. PubMed ID: 29286288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of single quantum emitter and dark plasmon supported by a metal nanoring.
    Deinega A; Seideman T
    J Chem Phys; 2014 Jun; 140(23):234311. PubMed ID: 24952545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.
    Li J; Guo LX; Jiao YC; Li K
    Opt Express; 2011 Jan; 19(2):1091-100. PubMed ID: 21263648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.
    Meyer FJ; Davidson DB; Jakobus U; Stuchly MA
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):224-33. PubMed ID: 12665036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Analytical Study of Electromagnetic Deep Penetration Conditions and Implications in Lossy Media through Inhomogeneous Waves.
    Baccarelli P; Frezza F; Simeoni P; Tedeschi N
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30177617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method.
    Banerjee S; Cole JB; Yatagai T
    Micron; 2007; 38(2):97-103. PubMed ID: 16942885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New finite difference formulations for general inhomogeneous anisotropic bioelectric problems.
    Saleheen HI; Ng KT
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):800-9. PubMed ID: 9282472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perfectly matched layers for frequency-domain integral equation acoustic scattering problems.
    Alles EJ; van Dongen KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1077-86. PubMed ID: 21622063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.