These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 22825308)
1. A multi-axis MEMS sensor with integrated carbon nanotube-based piezoresistors for nanonewton level force metrology. Cullinan MA; Panas RM; Culpepper ML Nanotechnology; 2012 Aug; 23(32):325501. PubMed ID: 22825308 [TBL] [Abstract][Full Text] [Related]
2. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
3. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments. Oiko VT; Martins BV; Silva PC; Rodrigues V; Ugarte D Rev Sci Instrum; 2014 Mar; 85(3):035003. PubMed ID: 24689612 [TBL] [Abstract][Full Text] [Related]
5. Paper-based piezoresistive MEMS sensors. Liu X; Mwangi M; Li X; O'Brien M; Whitesides GM Lab Chip; 2011 Jul; 11(13):2189-96. PubMed ID: 21566813 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a silicon-based shear-force sensor on human subjects. Wang L; Beebe DJ IEEE Trans Biomed Eng; 2002 Nov; 49(11):1340-7. PubMed ID: 12450364 [TBL] [Abstract][Full Text] [Related]
8. Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity. Tran AV; Zhang X; Zhu B Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29937534 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and Characteristics of a SOI Three-Axis Acceleration Sensor Based on MEMS Technology. Zhao X; Wang Y; Wen D Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30970643 [TBL] [Abstract][Full Text] [Related]
10. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules. Song JW; Lee JS; An JE; Park CG Rev Sci Instrum; 2015 Jun; 86(6):065003. PubMed ID: 26133864 [TBL] [Abstract][Full Text] [Related]
11. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles. Yilmazoglu O; Yadav S; Cicek D; Schneider JJ Nanotechnology; 2016 Sep; 27(36):365502. PubMed ID: 27481641 [TBL] [Abstract][Full Text] [Related]
12. Carbon nanotube-sensor-integrated microfluidic platform for real-time chemical concentration detection. Yang L; Li M; Qu Y; Dong Z; Li WJ Electrophoresis; 2009 Sep; 30(18):3198-205. PubMed ID: 19722205 [TBL] [Abstract][Full Text] [Related]
14. Hysteresis Compensation of Piezoresistive Carbon Nanotube/Polydimethylsiloxane Composite-Based Force Sensors. Kim JS; Kim GW Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28125046 [TBL] [Abstract][Full Text] [Related]
15. Piezoresistive characteristics of MWNT nanocomposites and fabrication as a polymer pressure sensor. Gau C; Ko HS; Chen HT Nanotechnology; 2009 May; 20(18):185503. PubMed ID: 19420615 [TBL] [Abstract][Full Text] [Related]
16. Strain Sensing Characteristics of Rubbery Carbon Nanotube Composite for Flexible Sensors. Choi GR; Park HK; Huh H; Kim YJ; Ham H; Kim HW; Lim KT; Kim SY; Kang I J Nanosci Nanotechnol; 2016 Feb; 16(2):1607-11. PubMed ID: 27433630 [TBL] [Abstract][Full Text] [Related]
17. Biosensor system-on-a-chip including CMOS-based signal processing circuits and 64 carbon nanotube-based sensors for the detection of a neurotransmitter. Lee BY; Seo SM; Lee DJ; Lee M; Lee J; Cheon JH; Cho E; Lee H; Chung IY; Park YJ; Kim S; Hong S Lab Chip; 2010 Apr; 10(7):894-8. PubMed ID: 20300676 [TBL] [Abstract][Full Text] [Related]
18. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Algamili AS; Khir MHM; Dennis JO; Ahmed AY; Alabsi SS; Ba Hashwan SS; Junaid MM Nanoscale Res Lett; 2021 Jan; 16(1):16. PubMed ID: 33496852 [TBL] [Abstract][Full Text] [Related]