BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22825787)

  • 1. Amidic and acetonic cryoprotectants improve cryopreservation of volvocine green algae.
    Nakazawa A; Nishii I
    Cryo Letters; 2012; 33(3):202-13. PubMed ID: 22825787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryopreservation of two species of the multicellular volvocine green algal genus Astrephomene.
    Nozaki H; Mori F; Tanaka Y; Matsuzaki R; Yamashita S; Yamaguchi H; Kawachi M
    BMC Microbiol; 2023 Jan; 23(1):16. PubMed ID: 36650459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volvox: simple steps to developmental complexity?
    Nishii I; Miller SM
    Curr Opin Plant Biol; 2010 Dec; 13(6):646-53. PubMed ID: 21075047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae).
    Gwo JC; Chiu JY; Chou CC; Cheng HY
    Cryobiology; 2005 Jun; 50(3):338-43. PubMed ID: 15925583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of cytokinesis-related protein localization during the emergence of multicellularity in volvocine green algae.
    Arakaki Y; Fujiwara T; Kawai-Toyooka H; Kawafune K; Featherston J; Durand PM; Miyagishima SY; Nozaki H
    BMC Evol Biol; 2017 Dec; 17(1):243. PubMed ID: 29212441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of FM1-43, a membrane-specific fluorescent dye, to estimate plasma membrane integrity in the cryopreservation of green algae.
    Yamazaki T; Hirai C; Ota S; Kuwano K; Kuwano S
    Cryo Letters; 2014; 35(3):180-7. PubMed ID: 24997835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct shape-shifting regimes of bowl-shaped cell sheets - embryonic inversion in the multicellular green alga Pleodorina.
    Höhn S; Hallmann A
    BMC Dev Biol; 2016 Oct; 16(1):35. PubMed ID: 27733125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phototaxis of Chlamydomonas arises from a tuned adaptive photoresponse shared with multicellular Volvocine green algae.
    Leptos KC; Chioccioli M; Furlan S; Pesci AI; Goldstein RE
    Phys Rev E; 2023 Jan; 107(1-1):014404. PubMed ID: 36797913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryoprotectants protect medaka (Oryzias latipes) embryos from chilling injury.
    Zhang QJ; Zhou GB; Wang YP; Fu XW; Zhu SE
    Cryo Letters; 2012; 33(2):108-17. PubMed ID: 22576114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic factor optimization for cryopreservation of shipped sperm samples of diploid Pacific Oysters, Crassostrea gigas.
    Dong Q; Huang C; Eudeline B; Tiersch TR
    Cryobiology; 2005 Oct; 51(2):176-97. PubMed ID: 16126190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sperm cryopreservation protocol for the loach Misgurnus anguillicaudatus and its applicability for other related species.
    Yasui GS; Arias-Rodriguez L; Fujimoto T; Arai K
    Anim Reprod Sci; 2009 Dec; 116(3-4):335-45. PubMed ID: 19446413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell size for commitment to cell division and number of successive cell divisions in multicellular volvocine green algae Tetrabaena socialis and Gonium pectorale.
    Jong LW; Fujiwara T; Nozaki H; Miyagishima SY
    Proc Jpn Acad Ser B Phys Biol Sci; 2017; 93(10):832-840. PubMed ID: 29225309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreservation of vegetative cells and zygotes of the multicellular volvocine green alga Gonium pectorale.
    Nozaki H; Mori F; Tanaka Y; Matsuzaki R; Yamaguchi H; Kawachi M
    BMC Microbiol; 2022 Apr; 22(1):103. PubMed ID: 35421922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreservation of red snapper (Lutjanus argentimaculatus) sperm: effect of cryoprotectants and cooling rates on sperm motility, sperm viability, and fertilization capacity.
    Vuthiphandchai V; Chomphuthawach S; Nimrat S
    Theriogenology; 2009 Jul; 72(1):129-38. PubMed ID: 19349072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of multicellularity in the volvocine algae.
    Kirk DL
    Curr Opin Plant Biol; 1999 Dec; 2(6):496-501. PubMed ID: 10607653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of complexity in the volvocine algae: transitions in individuality through Darwin's eye.
    Herron MD; Michod RE
    Evolution; 2008 Feb; 62(2):436-51. PubMed ID: 18031303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volvox and volvocine green algae.
    Umen JG
    Evodevo; 2020; 11():13. PubMed ID: 32626570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Limits and Causes of Plastid Genome Expansion in Volvocine Green Algae.
    Gaouda H; Hamaji T; Yamamoto K; Kawai-Toyooka H; Suzuki M; Noguchi H; Minakuchi Y; Toyoda A; Fujiyama A; Nozaki H; Smith DR
    Genome Biol Evol; 2018 Sep; 10(9):2248-2254. PubMed ID: 30102347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-option during the evolution of multicellular and developmental complexity in the volvocine green algae.
    Olson BJ; Nedelcu AM
    Curr Opin Genet Dev; 2016 Aug; 39():107-115. PubMed ID: 27379901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple classification of the volvocine algae by formal languages.
    Yoshida H; Yokomori T; Suyama A
    Bull Math Biol; 2005 Nov; 67(6):1339-54. PubMed ID: 16005503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.