These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22826135)

  • 1. A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers.
    Bellan LM; Pearsall M; Cropek DM; Langer R
    Adv Mater; 2012 Oct; 24(38):5187-91. PubMed ID: 22826135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in the disintegration of shellac-coated soft gelatin capsules in simulated intestinal fluid.
    Pearnchob N; Dashevsky A; Bodmeier R
    J Control Release; 2004 Feb; 94(2-3):313-21. PubMed ID: 14744483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration.
    Wang W; Zhang X; Teng A; Liu A
    Int J Biol Macromol; 2017 Oct; 103():226-233. PubMed ID: 28495633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.
    Al-Gousous J; Penning M; Langguth P
    Int J Pharm; 2015 Apr; 484(1-2):283-91. PubMed ID: 25578368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toad's egg-like cultivation process for forming microcarriers from nanofibrous hydrogel.
    Higashi K; Miki N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5900-3. PubMed ID: 26737634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-functionalized silk hydrogel microfluidic systems.
    Zhao S; Chen Y; Partlow BP; Golding AS; Tseng P; Coburn J; Applegate MB; Moreau JE; Omenetto FG; Kaplan DL
    Biomaterials; 2016 Jul; 93():60-70. PubMed ID: 27077566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEGylation of shellac-based nanocarriers for enhanced colloidal stability.
    Prawatborisut M; Seidi F; Yiamsawas D; Crespy D
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110434. PubMed ID: 31437607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor.
    Zhou X; Li C; Shao Y; Chen C; Yang Z; Liu D
    Chem Commun (Camb); 2016 Aug; 52(70):10668-71. PubMed ID: 27506763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process.
    Limmatvapirat S; Limmatvapirat C; Puttipipatkhachorn S; Nunthanid J; Luangtana-anan M; Sriamornsak P
    Eur J Pharm Biopharm; 2008 Aug; 69(3):1004-13. PubMed ID: 18362064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique.
    Labuschagne PW; Naicker B; Kalombo L
    Int J Pharm; 2016 Feb; 499(1-2):205-216. PubMed ID: 26707412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of thin gelatin hydrogel membranes with balloon properties for dynamic tissue engineering.
    Jepsen ML; Nielsen LH; Boisen A; Almdal K; Dufva M
    Biopolymers; 2019 Jan; 110(1):e23241. PubMed ID: 30536858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of drug release from pellets coated with different shellac types.
    Farag Y; Leopold CS
    Drug Dev Ind Pharm; 2011 Feb; 37(2):193-200. PubMed ID: 21073321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
    Hwang CM; Sant S; Masaeli M; Kachouie NN; Zamanian B; Lee SH; Khademhosseini A
    Biofabrication; 2010 Sep; 2(3):035003. PubMed ID: 20823504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering.
    Cui J; Wang H; Shi Q; Sun T; Huang Q; Fukuda T
    Molecules; 2019 May; 24(9):. PubMed ID: 31067670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release of growth factors based on biodegradation of gelatin hydrogel.
    Yamamoto M; Ikada Y; Tabata Y
    J Biomater Sci Polym Ed; 2001; 12(1):77-88. PubMed ID: 11334191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of different plasticizers and polymers on the mechanical and thermal properties, porosity and drug permeability of free shellac films.
    Qussi B; Suess WG
    Drug Dev Ind Pharm; 2006 Apr; 32(4):403-12. PubMed ID: 16638678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel hydrogels as supports for in vitro cell growth: poly(ethylene glycol)- and gelatine-based (meth)acrylamidopeptide macromonomers.
    Zimmermann J; Bittner K; Stark B; Mülhaupt R
    Biomaterials; 2002 May; 23(10):2127-34. PubMed ID: 11962653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of shellac-coated sustained release pellet formulations.
    Farag Y; Leopold CS
    Eur J Pharm Sci; 2011 Mar; 42(4):400-5. PubMed ID: 21251975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterning of Structurally Anisotropic Composite Hydrogel Sheets.
    Prince E; Alizadehgiashi M; Campbell M; Khuu N; Albulescu A; De France K; Ratkov D; Li Y; Hoare T; Kumacheva E
    Biomacromolecules; 2018 Apr; 19(4):1276-1284. PubMed ID: 29505709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro growth of bioactive nanostructured apatites via agar-gelatin hybrid hydrogel.
    Deng Y; Zhao X; Zhou Y; Zhu P; Zhang L; Wei S
    J Biomed Nanotechnol; 2013 Dec; 9(12):1972-83. PubMed ID: 24266253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.