BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22826261)

  • 1. Calculation of thermodynamic hydricities and the design of hydride donors for CO2 reduction.
    Muckerman JT; Achord P; Creutz C; Polyansky DE; Fujita E
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15657-62. PubMed ID: 22826261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced Catalytic Organic-Hydride Transfer to CO
    Kinoshita Y; Deromachi N; Kajiwara T; Koizumi TA; Kitagawa S; Tamiaki H; Tanaka K
    ChemSusChem; 2023 Mar; 16(6):e202300032. PubMed ID: 36639358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Metal-Free Hydride Donor Catalysts for CO
    Ilic S; Gesiorski JL; Weerasooriya RB; Glusac KD
    Acc Chem Res; 2022 Mar; 55(6):844-856. PubMed ID: 35201767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and kinetic hydricity of ruthenium(II) hydride complexes.
    Matsubara Y; Fujita E; Doherty MD; Muckerman JT; Creutz C
    J Am Chem Soc; 2012 Sep; 134(38):15743-57. PubMed ID: 22966971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of hydride donor generation using a Ru(II) complex containing an NAD+ model ligand: pulse and steady-state radiolysis studies.
    Polyansky DE; Cabelli D; Muckerman JT; Fukushima T; Tanaka K; Fujita E
    Inorg Chem; 2008 May; 47(10):3958-68. PubMed ID: 18345613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approach to multi-electron reduction beyond two-electron reduction of CO2.
    Kobayashi K; Tanaka K
    Phys Chem Chem Phys; 2014 Feb; 16(6):2240-50. PubMed ID: 24382494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical Properties and Reactivity of a Ru Compound Containing an NAD/NADH-Functionalized 1,10-Phenanthroline Ligand.
    Kobayashi K; Ohtsu H; Nozaki K; Kitagawa S; Tanaka K
    Inorg Chem; 2016 Mar; 55(5):2076-84. PubMed ID: 26849425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine.
    Lim CH; Holder AM; Hynes JT; Musgrave CB
    J Am Chem Soc; 2014 Nov; 136(45):16081-95. PubMed ID: 25323134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic Hydricities of Biomimetic Organic Hydride Donors.
    Ilic S; Pandey Kadel U; Basdogan Y; Keith JA; Glusac KD
    J Am Chem Soc; 2018 Apr; 140(13):4569-4579. PubMed ID: 29547268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlating Thermodynamic and Kinetic Hydricities of Rhenium Hydrides.
    Espinosa MR; Ertem MZ; Barakat M; Bruch QJ; Deziel AP; Elsby MR; Hasanayn F; Hazari N; Miller AJM; Pecoraro MV; Smith AM; Smith NE
    J Am Chem Soc; 2022 Oct; 144(39):17939-17954. PubMed ID: 36130605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced four- and six-electron reduction of mononuclear ruthenium complexes having NAD+ analogous ligands.
    Fukushima T; Wada T; Ohtsu H; Tanaka K
    Dalton Trans; 2010 Dec; 39(48):11526-34. PubMed ID: 20830398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical behavior of a Rh(pentamethylcyclopentadienyl) complex bearing an NAD
    Kobayashi K; Koizumi TA; Ghosh D; Kajiwara T; Kitagawa S; Tanaka K
    Dalton Trans; 2018 Apr; 47(15):5207-5216. PubMed ID: 29537007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water.
    Brereton KR; Bellows SM; Fallah H; Lopez AA; Adams RM; Miller AJ; Jones WD; Cundari TR
    J Phys Chem B; 2016 Dec; 120(50):12911-12919. PubMed ID: 28002955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal complexes coordinated by an NAD(P)H model compound and their enhanced hydride-donating abilities in the presence of a base.
    Kobayashi A; Konno H; Sakamoto K; Sekine A; Ohashi Y; Iida M; Ishitani O
    Chemistry; 2005 Jul; 11(14):4219-26. PubMed ID: 15864798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes.
    Tamaki Y; Morimoto T; Koike K; Ishitani O
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15673-8. PubMed ID: 22908243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base assisted C-C coupling between carbonyl and polypyridyl ligands in a Ru-NADH-type carbonyl complex.
    Ghosh D; Fukushima T; Kobayashi K; Sen S; Kitagawa S; Kato T; Tanaka K
    Dalton Trans; 2017 Mar; 46(13):4373-4381. PubMed ID: 28287662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules.
    Saveant JM; Tard C
    J Am Chem Soc; 2016 Jan; 138(3):1017-21. PubMed ID: 26717443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel.
    Connelly Robinson SJ; Zall CM; Miller DL; Linehan JC; Appel AM
    Dalton Trans; 2016 Jun; 45(24):10017-23. PubMed ID: 27071366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-Electron Reduction of a New Ruthenium Dicarbonyl Complex Having Two NAD Model Ligands through Decarboxylation in Water.
    Fukushima T; Ghosh D; Kobayashi K; Ohtsu H; Kitagawa S; Tanaka K
    Inorg Chem; 2016 Nov; 55(22):11613-11616. PubMed ID: 27808509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and Photophysical Properties of [Re (L)(CO)3(phen)](+) and [Ru(L)2(bpy)2](2+) (L = imidazole), Building Units for Long-Range Electron Transfer in Modified Blue Copper Proteins.
    Fumanal M; Daniel C
    J Phys Chem A; 2016 Sep; 120(35):6934-43. PubMed ID: 27504895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.