BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 22826379)

  • 1. Identification of putative candidate genes for juvenile wood density in Pinus radiata.
    Li X; Wu HX; Southerton SG
    Tree Physiol; 2012 Aug; 32(8):1046-57. PubMed ID: 22826379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation.
    Li X; Wu HX; Southerton SG
    Gene; 2011 Nov; 487(1):62-71. PubMed ID: 21839815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics.
    Li X; Wu HX; Southerton SG
    BMC Genomics; 2011 Oct; 12():480. PubMed ID: 21962175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism.
    Li X; Yang X; Wu HX
    BMC Genomics; 2013 Nov; 14(1):768. PubMed ID: 24209714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don.
    Li X; Wu HX; Dillon SK; Southerton SG
    BMC Genomics; 2009 Jan; 10():41. PubMed ID: 19159482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional analysis of differentially expressed genes in response to stem inclination in young seedlings of pine.
    Ramos P; Le Provost G; Gantz C; Plomion C; Herrera R
    Plant Biol (Stuttg); 2012 Nov; 14(6):923-33. PubMed ID: 22646487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata.
    Li X; Wu HX; Southerton SG
    New Phytol; 2010 Aug; 187(3):764-76. PubMed ID: 20561208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis during ontogenesis of secondary xylem in maritime pine.
    Garcés M; Le Provost G; Lalanne C; Claverol S; Barré A; Plomion C; Herrera R
    Tree Physiol; 2014 Nov; 34(11):1263-77. PubMed ID: 24614303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots.
    Friedmann M; Ralph SG; Aeschliman D; Zhuang J; Ritland K; Ellis BE; Bohlmann J; Douglas CJ
    J Exp Bot; 2007; 58(3):593-614. PubMed ID: 17220514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress.
    Lu S; Li L; Yi X; Joshi CP; Chiang VL
    J Exp Bot; 2008; 59(3):681-95. PubMed ID: 18281718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of high spatial resolution datasets identify genes associated with multi-layered secondary cell wall thickening in Pinus bungeana.
    Guo Y; Jiao L; Wang J; Ma L; Lu Y; Zhang Y; Guo J; Yin Y
    Ann Bot; 2024 May; 133(7):953-968. PubMed ID: 38366549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and hormonal regulation of cambial development.
    Ursache R; Nieminen K; Helariutta Y
    Physiol Plant; 2013 Jan; 147(1):36-45. PubMed ID: 22551327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of proteins from the developing xylem of compression and non-compression wood of branches of sitka spruce (Picea sitchensis) reveals a differentially expressed laccase.
    McDougall GJ
    J Exp Bot; 2000 Aug; 51(349):1395-401. PubMed ID: 10944153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis.
    Andersson-Gunnerås S; Mellerowicz EJ; Love J; Segerman B; Ohmiya Y; Coutinho PM; Nilsson P; Henrissat B; Moritz T; Sundberg B
    Plant J; 2006 Jan; 45(2):144-65. PubMed ID: 16367961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal variation in transcript accumulation in wood-forming tissues of maritime pine (Pinus pinaster Ait.) with emphasis on a cell wall glycine-rich protein.
    Le Provost G; Paiva J; Pot D; Brach J; Plomion C
    Planta; 2003 Sep; 217(5):820-30. PubMed ID: 12768425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A NAC domain protein family contributing to the regulation of wood formation in poplar.
    Ohtani M; Nishikubo N; Xu B; Yamaguchi M; Mitsuda N; Goué N; Shi F; Ohme-Takagi M; Demura T
    Plant J; 2011 Aug; 67(3):499-512. PubMed ID: 21649762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular control of wood formation in trees.
    Ye ZH; Zhong R
    J Exp Bot; 2015 Jul; 66(14):4119-31. PubMed ID: 25750422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulation of secondary growth in Arabidopsis thaliana.
    Oh S; Park S; Han KH
    J Exp Bot; 2003 Dec; 54(393):2709-22. PubMed ID: 14585825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of membrane preparations from developing Pinus radiata compression wood.
    Mast S; Peng L; Jordan TW; Flint H; Phillips L; Donaldson L; Strabala TJ; Wagner A
    Tree Physiol; 2010 Nov; 30(11):1456-68. PubMed ID: 21030408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of cellulose synthase-like gene, PtrCSLD2 from developing xylem of aspen trees.
    Samuga A; Joshi CP
    Physiol Plant; 2004 Apr; 120(4):631-641. PubMed ID: 15032825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.