These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 22826441)
1. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Chen Y; Zhao W; Yang JS; Cheng Z; Luo H; Lu Z; Tan M; Gu W; Zhao Y Mol Cell Proteomics; 2012 Oct; 11(10):1048-62. PubMed ID: 22826441 [TBL] [Abstract][Full Text] [Related]
2. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Colak G; Xie Z; Zhu AY; Dai L; Lu Z; Zhang Y; Wan X; Chen Y; Cha YH; Lin H; Zhao Y; Tan M Mol Cell Proteomics; 2013 Dec; 12(12):3509-20. PubMed ID: 24176774 [TBL] [Abstract][Full Text] [Related]
4. Identification of Lysine Succinylome and Acetylome in the Vancomycin-Intermediate Staphylococcus aureus XN108. Tan L; Yang Y; Shang W; Hu Z; Peng H; Li S; Hu X; Rao X Microbiol Spectr; 2022 Dec; 10(6):e0348122. PubMed ID: 36374118 [TBL] [Abstract][Full Text] [Related]
5. Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow. Svinkina T; Gu H; Silva JC; Mertins P; Qiao J; Fereshetian S; Jaffe JD; Kuhn E; Udeshi ND; Carr SA Mol Cell Proteomics; 2015 Sep; 14(9):2429-40. PubMed ID: 25953088 [TBL] [Abstract][Full Text] [Related]
6. Lysine acetylation stoichiometry and proteomics analyses reveal pathways regulated by sirtuin 1 in human cells. Gil J; Ramírez-Torres A; Chiappe D; Luna-Peñaloza J; Fernandez-Reyes FC; Arcos-Encarnación B; Contreras S; Encarnación-Guevara S J Biol Chem; 2017 Nov; 292(44):18129-18144. PubMed ID: 28893905 [TBL] [Abstract][Full Text] [Related]
7. Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels. Liu X; Liu S; Bode L; Liu C; Zhang L; Wang X; Li D; Lei Y; Peng X; Cheng Z; Xie P Virology; 2015 Nov; 485():58-78. PubMed ID: 26210075 [TBL] [Abstract][Full Text] [Related]
8. Acetylome Analysis Identifies SIRT1 Targets in mRNA-Processing and Chromatin-Remodeling in Mouse Liver. Kim SY; Sim CK; Tang H; Han W; Zhang K; Xu F PLoS One; 2015; 10(10):e0140619. PubMed ID: 26468954 [TBL] [Abstract][Full Text] [Related]
9. Global Insight into Lysine Acetylation Events and Their Links to Biological Aspects in Beauveria bassiana, a Fungal Insect Pathogen. Wang ZK; Cai Q; Liu J; Ying SH; Feng MG Sci Rep; 2017 Mar; 7():44360. PubMed ID: 28295016 [TBL] [Abstract][Full Text] [Related]
10. Characterization of novel mechanisms for steatosis from global protein hyperacetylation in ethanol-induced mouse hepatocytes. Kim SJ; Kwon OK; Ki SH; Jeong TC; Lee S Biochem Biophys Res Commun; 2015 Aug; 463(4):832-8. PubMed ID: 26056001 [TBL] [Abstract][Full Text] [Related]
11. Tandem Mass Tag labelling quantitative acetylome analysis of differentially modified proteins during mycoparasitism of Clonostachys chloroleuca 67-1. Jiang N; Lv B; Wu H; Li S; Sun M Sci Rep; 2021 Nov; 11(1):22383. PubMed ID: 34789861 [TBL] [Abstract][Full Text] [Related]
12. Global Acetylomics of Dale AL; Man L; Cordwell SJ J Proteome Res; 2023 Nov; 22(11):3519-3533. PubMed ID: 37830485 [TBL] [Abstract][Full Text] [Related]
13. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Xu Q; Liu Q; Chen Z; Yue Y; Liu Y; Zhao Y; Zhou DX Nucleic Acids Res; 2021 May; 49(8):4613-4628. PubMed ID: 33836077 [TBL] [Abstract][Full Text] [Related]
14. Acetylome study in mouse adipocytes identifies targets of SIRT1 deacetylation in chromatin organization and RNA processing. Kim SY; Sim CK; Tang H; Han W; Zhang K; Xu F Arch Biochem Biophys; 2016 May; 598():1-10. PubMed ID: 27021582 [TBL] [Abstract][Full Text] [Related]
15. Global Proteome Analysis Links Lysine Acetylation to Diverse Functions in Oryza Sativa. Xue C; Liu S; Chen C; Zhu J; Yang X; Zhou Y; Guo R; Liu X; Gong Z Proteomics; 2018 Jan; 18(1):. PubMed ID: 29106068 [TBL] [Abstract][Full Text] [Related]
16. Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Nadtochiy SM; Redman E; Rahman I; Brookes PS Cardiovasc Res; 2011 Feb; 89(3):643-9. PubMed ID: 20823277 [TBL] [Abstract][Full Text] [Related]
17. Poplar acetylome profiling reveals lysine acetylation dynamics in seasonal bud dormancy release. Liao X; Li Y; Hu Z; Lin Y; Zheng B; Ding J Plant Cell Environ; 2021 Jun; 44(6):1830-1845. PubMed ID: 33675080 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori. Nie Z; Zhu H; Zhou Y; Wu C; Liu Y; Sheng Q; Lv Z; Zhang W; Yu W; Jiang C; Xie L; Zhang Y; Yao J Proteomics; 2015 Sep; 15(18):3253-66. PubMed ID: 26046922 [TBL] [Abstract][Full Text] [Related]
19. Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function. Li X; Ye J; Ma H; Lu P Plant J; 2018 Jan; 93(1):142-154. PubMed ID: 29124795 [TBL] [Abstract][Full Text] [Related]
20. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals. Akieda-Asai S; Zaima N; Ikegami K; Kahyo T; Yao I; Hatanaka T; Iemura S; Sugiyama R; Yokozeki T; Eishi Y; Koike M; Ikeda K; Chiba T; Yamaza H; Shimokawa I; Song SY; Matsuno A; Mizutani A; Sawabe M; Chao MV; Tanaka M; Kanaho Y; Natsume T; Sugimura H; Date Y; McBurney MW; Guarente L; Setou M PLoS One; 2010 Jul; 5(7):e11755. PubMed ID: 20668706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]