These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 22826441)

  • 41. Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3.
    Kwon S; Seok S; Yau P; Li X; Kemper B; Kemper JK
    J Biol Chem; 2017 Oct; 292(42):17312-17323. PubMed ID: 28808064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation.
    Prola A; Pires Da Silva J; Guilbert A; Lecru L; Piquereau J; Ribeiro M; Mateo P; Gressette M; Fortin D; Boursier C; Gallerne C; Caillard A; Samuel JL; François H; Sinclair DA; Eid P; Ventura-Clapier R; Garnier A; Lemaire C
    Cell Death Differ; 2017 Feb; 24(2):343-356. PubMed ID: 27911441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Treating Colon Cancer Cells with FK228 Reveals a Link between Histone Lysine Acetylation and Extensive Changes in the Cellular Proteome.
    Wang TY; Jia YL; Zhang X; Sun QL; Li YC; Zhang JH; Zhao CP; Wang XY; Wang L
    Sci Rep; 2015 Dec; 5():18443. PubMed ID: 26675280
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity.
    Yang H; Zhang W; Pan H; Feldser HG; Lainez E; Miller C; Leung S; Zhong Z; Zhao H; Sweitzer S; Considine T; Riera T; Suri V; White B; Ellis JL; Vlasuk GP; Loh C
    PLoS One; 2012; 7(9):e46364. PubMed ID: 23029496
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation.
    Wang F; Chan CH; Chen K; Guan X; Lin HK; Tong Q
    Oncogene; 2012 Mar; 31(12):1546-57. PubMed ID: 21841822
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Widespread protein lysine acetylation in gut microbiome and its alterations in patients with Crohn's disease.
    Zhang X; Ning Z; Mayne J; Yang Y; Deeke SA; Walker K; Farnsworth CL; Stokes MP; Couture JF; Mack D; Stintzi A; Figeys D
    Nat Commun; 2020 Aug; 11(1):4120. PubMed ID: 32807798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comprehensive analysis of the lysine acetylome and its potential regulatory roles in the virulence of Streptococcus pneumoniae.
    Liu YT; Pan Y; Lai F; Yin XF; Ge R; He QY; Sun X
    J Proteomics; 2018 Mar; 176():46-55. PubMed ID: 29386122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
    Sol EM; Wagner SA; Weinert BT; Kumar A; Kim HS; Deng CX; Choudhary C
    PLoS One; 2012; 7(12):e50545. PubMed ID: 23236377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TSC2 N-terminal lysine acetylation status affects to its stability modulating mTORC1 signaling and autophagy.
    García-Aguilar A; Guillén C; Nellist M; Bartolomé A; Benito M
    Biochim Biophys Acta; 2016 Nov; 1863(11):2658-2667. PubMed ID: 27542907
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deacetylation of MRTF-A by SIRT1 defies senescence induced down-regulation of collagen type I in fibroblast cells.
    Yang Y; Li Z; Guo J; Xu Y
    Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165723. PubMed ID: 32061777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aspirin-Mediated Acetylation of SIRT1 Maintains Intestinal Immune Homeostasis.
    Xie L; Li C; Wang C; Wu Z; Wang C; Chen C; Chen X; Zhou D; Zhou Q; Lu P; Ding C; Liu CY; Lin J; Zhang X; Yu X; Yu W
    Adv Sci (Weinh); 2024 May; 11(19):e2306378. PubMed ID: 38482749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1.
    Bouras T; Fu M; Sauve AA; Wang F; Quong AA; Perkins ND; Hay RT; Gu W; Pestell RG
    J Biol Chem; 2005 Mar; 280(11):10264-76. PubMed ID: 15632193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The diversity of lysine-acetylated proteins in Escherichia coli.
    Yu BJ; Kim JA; Moon JH; Ryu SE; Pan JG
    J Microbiol Biotechnol; 2008 Sep; 18(9):1529-36. PubMed ID: 18852508
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation.
    Hallows WC; Yu W; Denu JM
    J Biol Chem; 2012 Feb; 287(6):3850-8. PubMed ID: 22157007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.
    Mizuno Y; Nagano-Shoji M; Kubo S; Kawamura Y; Yoshida A; Kawasaki H; Nishiyama M; Yoshida M; Kosono S
    Microbiologyopen; 2016 Feb; 5(1):152-73. PubMed ID: 26663479
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comprehensive Proteomic Analysis of Lysine Acetylation in
    Yuan B; Liu T; Cheng Y; Gao S; Li L; Cai L; Yang J; Chen J; Zhong K
    Front Microbiol; 2021; 12():672559. PubMed ID: 34084157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Systematic analysis of lysine acetylome reveals potential functions of lysine acetylation in Shewanella baltica, the specific spoilage organism of aquatic products.
    Wang Y; Wang F; Bao X; Fu L
    J Proteomics; 2019 Aug; 205():103419. PubMed ID: 31212084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response.
    Guo J; Chai X; Mei Y; Du J; Du H; Shi H; Zhu JK; Zhang H
    Stress Biol; 2022 Jan; 2(1):1. PubMed ID: 37676343
    [TBL] [Abstract][Full Text] [Related]  

  • 59. First proteomic analysis of the role of lysine acetylation in extensive functions in Solenopsis invicta.
    Ye J; Li J
    PLoS One; 2020; 15(12):e0243787. PubMed ID: 33326466
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation.
    Dejene EA; Li Y; Showkatian Z; Ling H; Seto E
    J Biol Chem; 2020 Jul; 295(30):10255-10270. PubMed ID: 32457045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.