BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22826823)

  • 1. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration.
    Hupert-Kocurek K; Guzik U; Wojcieszyńska D
    Acta Biochim Pol; 2012; 59(3):345-51. PubMed ID: 22826823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering substrate specificity of catechol 2,3-dioxygenase from Planococcus sp. strain S5 by random mutagenesis.
    Hupert-Kocurek K; Wojcieszyńska D; Guzik U
    Acta Biochim Pol; 2014; 61(4):705-10. PubMed ID: 25337606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of a carboxyl-terminal truncated form of catechol 2,3-dioxygenase from Planococcus sp. S5.
    Hupert-Kocurek K; Wojcieszyńska D; Guzik U
    ScientificWorldJournal; 2014; 2014():598518. PubMed ID: 24693238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of alkylcatechol 2,3-dioxygenase from butylphenol degradation pathway of Pseudomonas putida MT4.
    Takeo M; Nishimura M; Takahashi H; Kitamura C; Kato D; Negoro S
    J Biosci Bioeng; 2007 Oct; 104(4):309-14. PubMed ID: 18023805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and mutagenesis of catechol 2,3-dioxygenase gene from the gram-positive Planococcus sp. strain S5.
    Hupert-Kocurek K; Stawicka A; Wojcieszyńska D; Guzik U
    J Mol Microbiol Biotechnol; 2013; 23(6):381-90. PubMed ID: 23921803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of catechol dioxygenase gene expression in soil during degradation of 2,4-dichlorophenol.
    Lillis L; Clipson N; Doyle E
    FEMS Microbiol Ecol; 2010 Aug; 73(2):363-9. PubMed ID: 20533943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes.
    Tuan NN; Hsieh HC; Lin YW; Huang SL
    Bioresour Technol; 2011 Mar; 102(5):4232-40. PubMed ID: 21227686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cloning and expression of catA gene from Pseudomonas putida ND6 and study on the catechol cleavage pathway].
    Zhao HB; Chen W; Cai BL
    Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):387-91. PubMed ID: 17672292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of 3-nitrotoluene by Rhodococcus sp. strain ZWL3NT.
    Tian XJ; Liu XY; Liu H; Wang SJ; Zhou NY
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9217-23. PubMed ID: 23250222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol.
    Wallis MG; Chapman SK
    Biochem J; 1990 Mar; 266(2):605-9. PubMed ID: 2317207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters.
    Göbel M; Kranz OH; Kaschabek SR; Schmidt E; Pieper DH; Reineke W
    Arch Microbiol; 2004 Oct; 182(2-3):147-56. PubMed ID: 15340793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31.
    Tropel D; Meyer C; Armengaud J; Jouanneau Y
    Arch Microbiol; 2002 Apr; 177(4):345-51. PubMed ID: 11889489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catechol 1,2-dioxygenase from the Gram-positive Rhodococcus opacus 1CP: quantitative structure/activity relationship and the crystal structures of native enzyme and catechols adducts.
    Matera I; Ferraroni M; Kolomytseva M; Golovleva L; Scozzafava A; Briganti F
    J Struct Biol; 2010 Jun; 170(3):548-64. PubMed ID: 20040374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterisation of new Planococcus sp. strain able for aromatic hydrocarbons degradation.
    Labuzek S; Hupert-Kocurek KT; Skurnik M
    Acta Microbiol Pol; 2003; 52(4):395-404. PubMed ID: 15095927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of catechol 2,3-dioxygenase from the aniline degradation pathway of Acinetobacter sp. YAA and its mutant enzyme, which resists substrate inhibition.
    Takeo M; Nishimura M; Shirai M; Takahashi H; Negoro S
    Biosci Biotechnol Biochem; 2007 Jul; 71(7):1668-75. PubMed ID: 17617714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.
    Toyama T; Sei K; Yu N; Kumada H; Inoue D; Hoang H; Soda S; Chang YC; Kikuchi S; Fujita M; Ike M
    Water Res; 2009 Aug; 43(15):3765-76. PubMed ID: 19541342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
    Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H
    Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, identification and characterization of a novel Ralstonia sp. FD-1, capable of degrading 4-fluoroaniline.
    Song E; Wang M; Shen D
    Biodegradation; 2014 Feb; 25(1):85-94. PubMed ID: 23604516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the gene encoding catechol 2,3-dioxygenase from Achromobacter xylosoxidans KF701.
    Moon J; Kang E; Min KR; Kim CK; Min KH; Lee KS; Kim Y
    Biochem Biophys Res Commun; 1997 Sep; 238(2):430-5. PubMed ID: 9299526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile catechol dioxygenases in Sphingobium scionense WP01
    Muthu M; Ophir Y; Macdonald LJ; Vaidya A; Lloyd-Jones G
    Antonie Van Leeuwenhoek; 2018 Dec; 111(12):2293-2301. PubMed ID: 29959655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.