These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 22826958)
1. [Fabrication of three-dimensional microwell patterns and their integration with C17. 2 neural stem cells]. Zhang L; Wu Z; Song Z; Huang Q; Liao Y; Li C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):555-62. PubMed ID: 22826958 [TBL] [Abstract][Full Text] [Related]
2. A microwell pattern for C17.2 cell aggregate formation with concave cylindrical surface induced cell peeling. Zhang LG; Zhong DH; Zhang Y; Li CZ; Kisaalita WS; Wu ZZ Biomaterials; 2014 Nov; 35(35):9423-37. PubMed ID: 25132604 [TBL] [Abstract][Full Text] [Related]
3. Micropatterning of neural stem cells and Purkinje neurons using a polydimethylsiloxane (PDMS) stencil. Choi JH; Lee H; Jin HK; Bae JS; Kim GM Lab Chip; 2012 Dec; 12(23):5045-50. PubMed ID: 23042549 [TBL] [Abstract][Full Text] [Related]
4. Preparation and surface characterization of poly-L-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: in vitro study. Nojehdehian H; Moztarzadeh F; Baharvand H; Nazarian H; Tahriri M Colloids Surf B Biointerfaces; 2009 Oct; 73(1):23-9. PubMed ID: 19520554 [TBL] [Abstract][Full Text] [Related]
5. Responsiveness of voltage-gated calcium channels in SH-SY5Y human neuroblastoma cells on quasi-three-dimensional micropatterns formed with poly (l-lactic acid). Wu ZZ; Wang ZW; Zhang LG; An ZX; Zhong DH; Huang QP; Luo MR; Liao YJ; Jin L; Li CZ; Kisaalita WS Int J Nanomedicine; 2013; 8():93-107. PubMed ID: 23319861 [TBL] [Abstract][Full Text] [Related]
6. Micropattern array with gradient size (µPAGS) plastic surfaces fabricated by PDMS (polydimethylsiloxane) mold-based hot embossing technique for investigation of cell-surface interaction. Choi MJ; Park JY; Cha KJ; Rhie JW; Cho DW; Kim DS Biofabrication; 2012 Dec; 4(4):045006. PubMed ID: 23075468 [TBL] [Abstract][Full Text] [Related]
7. A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss. Cha JM; Park H; Shin EK; Sung JH; Kim O; Jung W; Bang OY; Kim J Biofabrication; 2017 Aug; 9(3):035006. PubMed ID: 28726681 [TBL] [Abstract][Full Text] [Related]
8. Benchtop fabrication of microfluidic systems based on curable polymers with improved solvent compatibility. Hashimoto M; Langer R; Kohane DS Lab Chip; 2013 Jan; 13(2):252-9. PubMed ID: 23192674 [TBL] [Abstract][Full Text] [Related]
9. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Zhu XH; Lee LY; Jackson JS; Tong YW; Wang CH Biotechnol Bioeng; 2008 Aug; 100(5):998-1009. PubMed ID: 18551526 [TBL] [Abstract][Full Text] [Related]
10. [Study on in vitro isolation and culture method of neural stem cells from fetal rat neocortex]. Wang X; Wei X; Zheng W; Zhang H; Chen H; Tian D; Jiang S; Qu W Wei Sheng Yan Jiu; 2010 Nov; 39(6):674-7. PubMed ID: 21351628 [TBL] [Abstract][Full Text] [Related]
11. Directly Induced Neural Differentiation of Human Adipose-Derived Stem Cells Using Three-Dimensional Culture System of Conductive Microwell with Electrical Stimulation. Heo DN; Acquah N; Kim J; Lee SJ; Castro NJ; Zhang LG Tissue Eng Part A; 2018 Apr; 24(7-8):537-545. PubMed ID: 28741412 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of omega-shaped microwell arrays for a spheroid culture platform using pins of a commercial CPU to minimize cell loss and crosstalk. Kim K; Kim SH; Lee GH; Park JY Biofabrication; 2018 Aug; 10(4):045003. PubMed ID: 30074487 [TBL] [Abstract][Full Text] [Related]
14. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. Shin YC; Lee JH; Jin L; Kim MJ; Kim YJ; Hyun JK; Jung TG; Hong SW; Han DW J Nanobiotechnology; 2015 Mar; 13():21. PubMed ID: 25886153 [TBL] [Abstract][Full Text] [Related]
16. 3-D microwell culture of human embryonic stem cells. Mohr JC; de Pablo JJ; Palecek SP Biomaterials; 2006 Dec; 27(36):6032-42. PubMed ID: 16884768 [TBL] [Abstract][Full Text] [Related]
17. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord. Xia L; Wan H; Hao SY; Li DZ; Chen G; Gao CC; Li JH; Yang F; Wang SG; Liu S Chin Med J (Engl); 2013 Mar; 126(5):909-17. PubMed ID: 23489801 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Hwang CM; Khademhosseini A; Park Y; Sun K; Lee SH Langmuir; 2008 Jun; 24(13):6845-51. PubMed ID: 18512874 [TBL] [Abstract][Full Text] [Related]
20. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Chen G; Sato T; Ohgushi H; Ushida T; Tateishi T; Tanaka J Biomaterials; 2005 May; 26(15):2559-66. PubMed ID: 15585258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]