These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22827126)

  • 1. Temporal scales and patterns of invertebrate biodiversity dynamics in boreal lakes recovering from acidification.
    Angeler DG; Johnson RK
    Ecol Appl; 2012 Jun; 22(4):1172-86. PubMed ID: 22827126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracing α, β, and γ diversity responses to environmental change in boreal lakes.
    Angeler DG; Drakare S
    Oecologia; 2013 Aug; 172(4):1191-202. PubMed ID: 23229393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical dynamics of ecological communities: do scales of space and time match?
    Angeler DG; Göthe E; Johnson RK
    PLoS One; 2013; 8(7):e69174. PubMed ID: 23874905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilience of epilithic algal assemblages in atmospherically and experimentally acidified boreal lakes.
    Vinebrooke RD; Graham MD; Findlay DL; Turner MA
    Ambio; 2003 Apr; 32(3):196-202. PubMed ID: 12839195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking degradation status with ecosystem vulnerability to environmental change.
    Angeler DG; Baho DL; Allen CR; Johnson RK
    Oecologia; 2015 Jul; 178(3):899-913. PubMed ID: 25752618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of invertebrates as indicators of environmental change in alpine rivers and lakes.
    Khamis K; Hannah DM; Brown LE; Tiberti R; Milner AM
    Sci Total Environ; 2014 Sep; 493():1242-54. PubMed ID: 24650750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive reversals in acid tolerance in copepods from lakes recovering from historical stress.
    Derry AM; Arnott SE
    Ecol Appl; 2007 Jun; 17(4):1116-26. PubMed ID: 17555222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similar resilience attributes in lakes with different management practices.
    Baho DL; Drakare S; Johnson RK; Allen CR; Angeler DG
    PLoS One; 2014; 9(3):e91881. PubMed ID: 24618720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of flow-sediment regime on benthic invertebrate communities: Long-term analysis in a regulated floodplain lake.
    Xu C; Li Y
    Sci Total Environ; 2019 Feb; 649():201-211. PubMed ID: 30173029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.
    Zaharescu DG; Burghelea CI; Hooda PS; Lester RN; Palanca-Soler A
    Sci Total Environ; 2016 May; 551-552():496-505. PubMed ID: 26896578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between aquatic invertebrate communities, water-level fluctuations and different habitats in a subtropical lake.
    Lemes da Silva AL; Petrucio MM
    Environ Monit Assess; 2018 Aug; 190(9):548. PubMed ID: 30143869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes.
    Klymus KE; Marshall NT; Stepien CA
    PLoS One; 2017; 12(5):e0177643. PubMed ID: 28542313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does road salting confound the recovery of the microcrustacean community in an acidified lake?
    Jensen TC; Meland S; Schartau AK; Walseng B
    Sci Total Environ; 2014 Apr; 478():36-47. PubMed ID: 24530583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rarity is a more reliable indicator of land-use impacts on soil invertebrate communities than other diversity metrics.
    Dopheide A; Makiola A; Orwin KH; Holdaway RJ; Wood JR; Dickie IA
    Elife; 2020 May; 9():. PubMed ID: 32423527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling.
    Valinia S; Englund G; Moldan F; Futter MN; Köhler SJ; Bishop K; Fölster J
    Glob Chang Biol; 2014 Sep; 20(9):2752-64. PubMed ID: 24535943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales.
    Donohue I; Jackson AL; Pusch MT; Irvine K
    Ecology; 2009 Dec; 90(12):3470-7. PubMed ID: 20120814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of crustacean zooplankton communities from acidification in Killarney Park, Ontario, 1971-2000: pH 6 as a recovery goal.
    Holt C; Yan ND
    Ambio; 2003 Apr; 32(3):203-7. PubMed ID: 12839196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of regional reductions in sulphur deposition on the chemical and biological recovery of lakes within Killarney Park, Ontario, Canada.
    Snucins E; Gunn J; Keller B; Dixit S; Hindar A; Henriksen A
    Environ Monit Assess; 2001; 67(1-2):179-94. PubMed ID: 11339698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in assessing biological recovery from acidification in Swedish lakes.
    Holmgren K
    Ambio; 2014; 43 Suppl 1(Suppl 1):19-29. PubMed ID: 25403967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating long-term trends in littoral benthic macroinvertebrate communities of lakes recovering from acid deposition.
    Lento J; Dillon PJ; Somers KM
    Environ Monit Assess; 2012 Dec; 184(12):7175-87. PubMed ID: 22193633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.