These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests. Samuelson LJ; Stokes TA; Butnor JR; Johnsen KH; Gonzalez-Benecke CA; Martin TA; Cropper WP; Anderson PH; Ramirez MR; Lewis JC Ecol Appl; 2017 Jan; 27(1):244-259. PubMed ID: 28052499 [TBL] [Abstract][Full Text] [Related]
4. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests. Zhao J; Kang F; Wang L; Yu X; Zhao W; Song X; Zhang Y; Chen F; Sun Y; He T; Han H PLoS One; 2014; 9(4):e94966. PubMed ID: 24736660 [TBL] [Abstract][Full Text] [Related]
5. [Influence of thinning on regeneration in a coastal pinus thunbergii forest]. Zhu J; Li F; Matsuzaki T; Gonda Y Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1361-7. PubMed ID: 12624984 [TBL] [Abstract][Full Text] [Related]
6. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Dar JA; Sundarapandian S Environ Monit Assess; 2015 Feb; 187(2):55. PubMed ID: 25638061 [TBL] [Abstract][Full Text] [Related]
7. Carbon stocks of three secondary coniferous forests along an altitudinal gradient on Loess Plateau in inland China. Liu N; Nan H PLoS One; 2018; 13(5):e0196927. PubMed ID: 29723254 [TBL] [Abstract][Full Text] [Related]
8. The dynamics of the carbon storage and fluxes in Scots pine (Pinus sylvestris) chronosequence. Uri V; Kukumägi M; Aosaar J; Varik M; Becker H; Aun K; Lõhmus K; Soosaar K; Astover A; Uri M; Buht M; Sepaste A; Padari A Sci Total Environ; 2022 Apr; 817():152973. PubMed ID: 35007591 [TBL] [Abstract][Full Text] [Related]
9. Above- and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively. Jones IL; DeWalt SJ; Lopez OR; Bunnefeld L; Pattison Z; Dent DH Sci Total Environ; 2019 Dec; 697():133987. PubMed ID: 31484096 [TBL] [Abstract][Full Text] [Related]
10. Thinning but not understory removal increased heterotrophic respiration and total soil respiration in Pinus massoniana stands. Lei L; Xiao W; Zeng L; Zhu J; Huang Z; Cheng R; Gao S; Li MH Sci Total Environ; 2018 Apr; 621():1360-1369. PubMed ID: 29107368 [TBL] [Abstract][Full Text] [Related]
11. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation. Li S; Su J; Liu W; Lang X; Huang X; Jia C; Zhang Z; Tong Q PLoS One; 2015; 10(9):e0135946. PubMed ID: 26397366 [TBL] [Abstract][Full Text] [Related]
12. Thinning Effects on Biomass and Carbon Stock for Young Taiwania Plantations. Lin JC; Chiu CM; Lin YJ; Liu WY Sci Rep; 2018 Feb; 8(1):3070. PubMed ID: 29449666 [TBL] [Abstract][Full Text] [Related]
13. Regeneration of a coastal pine (Pinus thunbergii Parl.) forest 11 years after thinning, Niigata, Japan. Zhu J; Gonda Y; Yu L; Li F; Yan Q; Sun Y PLoS One; 2012; 7(10):e47593. PubMed ID: 23091632 [TBL] [Abstract][Full Text] [Related]
14. Carbon accretion in unthinned and thinned young-growth forest stands of the Alaskan perhumid coastal temperate rainforest. D'Amore DV; Oken KL; Herendeen PA; Steel EA; Hennon PE Carbon Balance Manag; 2015 Dec; 10(1):25. PubMed ID: 26500691 [TBL] [Abstract][Full Text] [Related]
15. Thinning and plantation of resprouting species redirect overstocked pine stands towards more functional communities in the Mediterranean basin. Moghli A; Santana VM; Soliveres S; Baeza MJ Sci Total Environ; 2022 Feb; 806(Pt 3):150715. PubMed ID: 34610406 [TBL] [Abstract][Full Text] [Related]
16. Traditional fire use impact in the aboveground carbon stock of the chestnut forests of Central Spain and its implications for prescribed burning. Seijo F; Cespedes B; Zavala G Sci Total Environ; 2018 Jun; 625():1405-1414. PubMed ID: 29996437 [TBL] [Abstract][Full Text] [Related]
17. Soil carbon pools and fluxes following the regreening of a mining and smelting degraded landscape. Levasseur PA; Aherne J; Basiliko N; Emilson EJS; Preston MD; Sager EPS; Watmough SA Sci Total Environ; 2023 Dec; 904():166734. PubMed ID: 37673266 [TBL] [Abstract][Full Text] [Related]
18. Comparing the influence of site quality, stand age, fire and climate on aboveground tree production in Siberian Scots pine forests. Wirth C; Schulze ED; Kusznetova V; Milyukova I; Hardes G; Siry M; Schulze B; Vygodskaya NN Tree Physiol; 2002 Jun; 22(8):537-52. PubMed ID: 12045026 [TBL] [Abstract][Full Text] [Related]
19. Lower alpha, higher beta, and similar gamma diversity of saproxylic beetles in unmanaged compared to managed Norway spruce stands. Gran O PLoS One; 2022; 17(7):e0271092. PubMed ID: 35802717 [TBL] [Abstract][Full Text] [Related]
20. Species diversity patterns in managed Scots pine stands in ancient forest sites. Stefańska-Krzaczek E; Staniaszek-Kik M; Szczepańska K; Szymura TH PLoS One; 2019; 14(7):e0219620. PubMed ID: 31295314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]