These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
517 related articles for article (PubMed ID: 22827909)
1. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Wankel SD; Adams MM; Johnston DT; Hansel CM; Joye SB; Girguis PR Environ Microbiol; 2012 Oct; 14(10):2726-40. PubMed ID: 22827909 [TBL] [Abstract][Full Text] [Related]
2. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
4. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. Biddle JF; Cardman Z; Mendlovitz H; Albert DB; Lloyd KG; Boetius A; Teske A ISME J; 2012 May; 6(5):1018-31. PubMed ID: 22094346 [TBL] [Abstract][Full Text] [Related]
5. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment. Jagersma GC; Meulepas RJ; Heikamp-de Jong I; Gieteling J; Klimiuk A; Schouten S; Damsté JS; Lens PN; Stams AJ Environ Microbiol; 2009 Dec; 11(12):3223-32. PubMed ID: 19703218 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic methane oxidation coupled to sulfate reduction in a biotrickling filter: Reactor performance and microbial community analysis. Cassarini C; Rene ER; Bhattarai S; Vogt C; Musat N; Lens PNL Chemosphere; 2019 Dec; 236():124290. PubMed ID: 31310977 [TBL] [Abstract][Full Text] [Related]
7. Methyl-compounds driven benthic carbon cycling in the sulfate-reducing sediments of South China Sea. Xu L; Zhuang GC; Montgomery A; Liang Q; Joye SB; Wang F Environ Microbiol; 2021 Feb; 23(2):641-651. PubMed ID: 32506654 [TBL] [Abstract][Full Text] [Related]
8. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Nauhaus K; Treude T; Boetius A; Krüger M Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940 [TBL] [Abstract][Full Text] [Related]
9. Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep. Yu H; Speth DR; Connon SA; Goudeau D; Malmstrom RR; Woyke T; Orphan VJ Appl Environ Microbiol; 2022 Jun; 88(11):e0210921. PubMed ID: 35604226 [TBL] [Abstract][Full Text] [Related]
10. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
11. High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels. Beal EJ; Claire MW; House CH Geobiology; 2011 Mar; 9(2):131-9. PubMed ID: 21231994 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. Timmers PH; Suarez-Zuluaga DA; van Rossem M; Diender M; Stams AJ; Plugge CM ISME J; 2016 Jun; 10(6):1400-12. PubMed ID: 26636551 [TBL] [Abstract][Full Text] [Related]
14. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea. Skennerton CT; Chourey K; Iyer R; Hettich RL; Tyson GW; Orphan VJ mBio; 2017 Aug; 8(4):. PubMed ID: 28765215 [TBL] [Abstract][Full Text] [Related]
15. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Winkel M; Mitzscherling J; Overduin PP; Horn F; Winterfeld M; Rijkers R; Grigoriev MN; Knoblauch C; Mangelsdorf K; Wagner D; Liebner S Sci Rep; 2018 Jan; 8(1):1291. PubMed ID: 29358665 [TBL] [Abstract][Full Text] [Related]
17. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). Schubert CJ; Vazquez F; Lösekann-Behrens T; Knittel K; Tonolla M; Boetius A FEMS Microbiol Ecol; 2011 Apr; 76(1):26-38. PubMed ID: 21244447 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3. Bhattarai S; Cassarini C; Gonzalez-Gil G; Egger M; Slomp CP; Zhang Y; Esposito G; Lens PNL Microb Ecol; 2017 Oct; 74(3):608-622. PubMed ID: 28389729 [TBL] [Abstract][Full Text] [Related]
19. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Girguis PR; Cozen AE; DeLong EF Appl Environ Microbiol; 2005 Jul; 71(7):3725-33. PubMed ID: 16000782 [TBL] [Abstract][Full Text] [Related]
20. Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea. Yu H; Skennerton CT; Chadwick GL; Leu AO; Aoki M; Tyson GW; Orphan VJ ISME J; 2022 Jan; 16(1):168-177. PubMed ID: 34285362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]