These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22827936)
1. Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4(100) surface. Federici Canova F; Foster AS; Rasmussen MK; Meinander K; Besenbacher F; Lauritsen JV Nanotechnology; 2012 Aug; 23(32):325703. PubMed ID: 22827936 [TBL] [Abstract][Full Text] [Related]
2. Combined NC-AFM and DFT study of the adsorption geometry of trimesic acid on rutile TiO2(110). Greuling A; Rahe P; Kaczmarski M; Kühnle A; Rohlfing M J Phys Condens Matter; 2010 Sep; 22(34):345008. PubMed ID: 21403252 [TBL] [Abstract][Full Text] [Related]
3. Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Lauritsen JV; Foster AS; Olesen GH; Christensen MC; Kühnle A; Helveg S; Rostrup-Nielsen JR; Clausen BS; Reichling M; Besenbacher F Nanotechnology; 2006 Jul; 17(14):3436-41. PubMed ID: 19661587 [TBL] [Abstract][Full Text] [Related]
4. NC-AFM imaging of the TiO(2)(110)-(1 x 1) surface at low temperature. Yurtsever A; Sugimoto Y; Abe M; Morita S Nanotechnology; 2010 Apr; 21(16):165702. PubMed ID: 20348596 [TBL] [Abstract][Full Text] [Related]
5. Noncontact atomic force microscopy study of the spinel MgAl(2)O(4)(111) surface. Rasmussen MK; Meinander K; Besenbacher F; Lauritsen JV Beilstein J Nanotechnol; 2012; 3():192-7. PubMed ID: 22496991 [TBL] [Abstract][Full Text] [Related]
6. Chain structures of surface hydroxyl groups formed via line oxygen vacancies on TiO2(110) surfaces studied using noncontact atomic force microscopy. Namai Y; Matsuoka O J Phys Chem B; 2005 Dec; 109(50):23948-54. PubMed ID: 16375383 [TBL] [Abstract][Full Text] [Related]
7. High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy. Pawlak R; Kawai S; Fremy S; Glatzel T; Meyer E J Phys Condens Matter; 2012 Feb; 24(8):084005. PubMed ID: 22310075 [TBL] [Abstract][Full Text] [Related]
8. 'Sub-atomic' resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study. Campbellová A; Ondráček M; Pou P; Pérez R; Klapetek P; Jelínek P Nanotechnology; 2011 Jul; 22(29):295710. PubMed ID: 21685559 [TBL] [Abstract][Full Text] [Related]
9. Highly resolved non-contact atomic force microscopy images of the Sn/Si(111)-([Formula: see text]) surface. Sugimoto Y; Abe M; Hirayama S; Morita S Nanotechnology; 2006 Aug; 17(16):4235-9. PubMed ID: 21727565 [TBL] [Abstract][Full Text] [Related]
10. The role of the tip in non-contact atomic force microscopy dissipation images of ionic surfaces. Federici Canova F; Foster AS Nanotechnology; 2011 Jan; 22(4):045702. PubMed ID: 21157016 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen activation, diffusion, and clustering on CeO₂(111): a DFT+U study. Fernández-Torre D; Carrasco J; Ganduglia-Pirovano MV; Pérez R J Chem Phys; 2014 Jul; 141(1):014703. PubMed ID: 25005299 [TBL] [Abstract][Full Text] [Related]
12. Models of atomic scale contrast in dissipation images of binary ionic surfaces in non-contact atomic force microscopy. Trevethan T; Kantorovich L Nanotechnology; 2006 Apr; 17(7):S205-12. PubMed ID: 21727416 [TBL] [Abstract][Full Text] [Related]
13. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research. Altman EI; Baykara MZ; Schwarz UD Acc Chem Res; 2015 Sep; 48(9):2640-8. PubMed ID: 26301490 [TBL] [Abstract][Full Text] [Related]