These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22828050)

  • 1. Parasympathetic influences on emmetropization in chicks: evidence for different mechanisms in form deprivation vs negative lens-induced myopia.
    Nickla DL; Schroedl F
    Exp Eye Res; 2012 Sep; 102():93-103. PubMed ID: 22828050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myopic defocus in the evening is more effective at inhibiting eye growth than defocus in the morning: Effects on rhythms in axial length and choroid thickness in chicks.
    Nickla DL; Thai P; Zanzerkia Trahan R; Totonelly K
    Exp Eye Res; 2017 Jan; 154():104-115. PubMed ID: 27845062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal integration characteristics of the axial and choroidal responses to myopic defocus induced by prior form deprivation versus positive spectacle lens wear in chickens.
    Nickla DL; Sharda V; Troilo D
    Optom Vis Sci; 2005 Apr; 82(4):318-27. PubMed ID: 15829859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brief hyperopic defocus or form deprivation have varying effects on eye growth and ocular rhythms depending on the time-of-day of exposure.
    Nickla DL; Jordan K; Yang J; Totonelly K
    Exp Eye Res; 2017 Aug; 161():132-142. PubMed ID: 28596085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia.
    Nickla DL; Totonelly K
    Exp Eye Res; 2011 Nov; 93(5):782-5. PubMed ID: 21872586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks.
    Nickla DL; Totonelly K; Dhillon B
    Exp Eye Res; 2010 Nov; 91(5):715-20. PubMed ID: 20801115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural pathways subserving negative lens-induced emmetropization in chicks--insights from selective lesions of the optic nerve and ciliary nerve.
    Wildsoet C
    Curr Eye Res; 2003 Dec; 27(6):371-85. PubMed ID: 14704921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Muscarinic Antagonist MT3 Distinguishes Between Form Deprivation- and Negative Lens-Induced Myopia in Chicks.
    Nickla DL; Yusupova Y; Totonelly K
    Curr Eye Res; 2015 Sep; 40(9):962-7. PubMed ID: 25310574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks.
    Wildsoet C; Wallman J
    Vision Res; 1995 May; 35(9):1175-94. PubMed ID: 7610579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient increases in choroidal thickness are consistently associated with brief daily visual stimuli that inhibit ocular growth in chicks.
    Nickla DL
    Exp Eye Res; 2007 May; 84(5):951-9. PubMed ID: 17395180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibiting the transient choroidal thickening response using the nitric oxide synthase inhibitor l-NAME prevents the ameliorative effects of visual experience on ocular growth in two different visual paradigms.
    Nickla DL; Wilken E; Lytle G; Yom S; Mertz J
    Exp Eye Res; 2006 Aug; 83(2):456-64. PubMed ID: 16635488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposite effects of glucagon and insulin on compensation for spectacle lenses in chicks.
    Zhu X; Wallman J
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):24-36. PubMed ID: 18791176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choroidal thickness predicts ocular growth in normal chicks but not in eyes with experimentally altered growth.
    Nickla DL; Totonelly K
    Clin Exp Optom; 2015 Nov; 98(6):564-70. PubMed ID: 26769180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of active emmetropisation in young chicks--influence of sign and magnitude of imposed defocus.
    Hammond DS; Wallman J; Wildsoet CF
    Ophthalmic Physiol Opt; 2013 May; 33(3):215-26. PubMed ID: 23662956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of brief high intensity light on ocular growth in chicks developing myopia vary with time of day.
    Sarfare S; Yang J; Nickla DL
    Exp Eye Res; 2020 Jun; 195():108039. PubMed ID: 32339518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocular diurnal rhythms and eye growth regulation: where we are 50 years after Lauber.
    Nickla DL
    Exp Eye Res; 2013 Sep; 114():25-34. PubMed ID: 23298452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of autonomic denervations on the rhythms in axial length and choroidal thickness in chicks.
    Nickla DL; Schroedl F
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Feb; 205(1):139-149. PubMed ID: 30604271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous defocus integration during refractive development.
    Tse DY; Lam CS; Guggenheim JA; Lam C; Li KK; Liu Q; To CH
    Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5352-9. PubMed ID: 18055781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal integration of visual signals in lens compensation (a review).
    Zhu X
    Exp Eye Res; 2013 Sep; 114():69-76. PubMed ID: 23470505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibiting the neuronal isoform of nitric oxide synthase has similar effects on the compensatory choroidal and axial responses to myopic defocus in chicks as does the non-specific inhibitor L-NAME.
    Nickla DL; Damyanova P; Lytle G
    Exp Eye Res; 2009 Jun; 88(6):1092-9. PubMed ID: 19450449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.