BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22828582)

  • 1. Potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes: a density functional theory study.
    Zhang P; Lian JS; Jiang Q
    Phys Chem Chem Phys; 2012 Sep; 14(33):11715-23. PubMed ID: 22828582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.
    Gong K; Du F; Xia Z; Durstock M; Dai L
    Science; 2009 Feb; 323(5915):760-4. PubMed ID: 19197058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing.
    Xu X; Jiang S; Hu Z; Liu S
    ACS Nano; 2010 Jul; 4(7):4292-8. PubMed ID: 20565121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations.
    Li Y; Zhong G; Yu H; Wang H; Peng F
    Phys Chem Chem Phys; 2015 Sep; 17(34):21950-9. PubMed ID: 26234475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction.
    Lin Z; Song MK; Ding Y; Liu Y; Liu M; Wong CP
    Phys Chem Chem Phys; 2012 Mar; 14(10):3381-7. PubMed ID: 22307527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.
    Qu L; Liu Y; Baek JB; Dai L
    ACS Nano; 2010 Mar; 4(3):1321-6. PubMed ID: 20155972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction.
    Lyalin A; Nakayama A; Uosaki K; Taketsugu T
    Phys Chem Chem Phys; 2013 Feb; 15(8):2809-20. PubMed ID: 23338859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes.
    Maldonado S; Stevenson KJ
    J Phys Chem B; 2005 Mar; 109(10):4707-16. PubMed ID: 16851552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced electrocatalytic performance of functionalized carbon nanotube electrodes for oxygen reduction in proton exchange membrane fuel cells.
    Kannan R; Bipinlal U; Kurungot S; Pillai VK
    Phys Chem Chem Phys; 2011 Jun; 13(21):10312-7. PubMed ID: 21528138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction.
    Yang Z; Yao Z; Li G; Fang G; Nie H; Liu Z; Zhou X; Chen X; Huang S
    ACS Nano; 2012 Jan; 6(1):205-11. PubMed ID: 22201338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic activity of Co-N(x)/C electrocatalysts for oxygen reduction reaction: a density functional theory study.
    Kattel S; Atanassov P; Kiefer B
    Phys Chem Chem Phys; 2013 Jan; 15(1):148-53. PubMed ID: 23147392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity.
    Choi CH; Park SH; Woo SI
    ACS Nano; 2012 Aug; 6(8):7084-91. PubMed ID: 22769428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical preparation of N-doped cobalt oxide nanoparticles with high electrocatalytic activity for the oxygen-reduction reaction.
    Yu H; Li Y; Li X; Fan L; Yang S
    Chemistry; 2014 Mar; 20(12):3457-62. PubMed ID: 24616113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-supported Pd-Co as cathode catalyst for APEMFCs and validation by DFT.
    Maheswari S; Karthikeyan S; Murugan P; Sridhar P; Pitchumani S
    Phys Chem Chem Phys; 2012 Jul; 14(27):9683-95. PubMed ID: 22692447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of nitrogen-doped carbon nanotubes with different morphologies from melamine-formaldehyde resin.
    Yao Y; Zhang B; Shi J; Yang Q
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7413-20. PubMed ID: 25790324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells.
    Zhang L; Niu J; Dai L; Xia Z
    Langmuir; 2012 May; 28(19):7542-50. PubMed ID: 22489601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A density functional theory study on oxygen reduction reaction on nitrogen-doped graphene.
    Zhang J; Wang Z; Zhu Z
    J Mol Model; 2013 Dec; 19(12):5515-21. PubMed ID: 24241180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity.
    Sharma PP; Wu J; Yadav RM; Liu M; Wright CJ; Tiwary CS; Yakobson BI; Lou J; Ajayan PM; Zhou XD
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13701-5. PubMed ID: 26404732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step hydrothermal synthesis of nitrogen-doped carbon nanotubes as an efficient electrocatalyst for oxygen reduction reactions.
    Chen L; Cui X; Wang Y; Wang M; Cui F; Wei C; Huang W; Hua Z; Zhang L; Shi J
    Chem Asian J; 2014 Oct; 9(10):2915-20. PubMed ID: 25100339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors.
    Kurusu F; Tsunoda H; Saito A; Tomita A; Kadota A; Kayahara N; Karube I; Gotoh M
    Analyst; 2006 Dec; 131(12):1292-8. PubMed ID: 17124536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.