These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22828582)

  • 41. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction.
    Kongkanand A; Kuwabata S; Girishkumar G; Kamat P
    Langmuir; 2006 Feb; 22(5):2392-6. PubMed ID: 16489834
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping.
    Ni S; Li Z; Yang J
    Nanoscale; 2012 Feb; 4(4):1184-9. PubMed ID: 22159283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites as potential metal-free electrocatalysts for oxygen reduction reaction.
    Feng Z; Ma Y; Li Y; Li R; Liu J; Li H; Tang Y; Dai X
    J Phys Condens Matter; 2019 Nov; 31(46):465201. PubMed ID: 31318700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrocatalytic activity of nitrogen-doped carbon nanotube cups.
    Tang Y; Allen BL; Kauffman DR; Star A
    J Am Chem Soc; 2009 Sep; 131(37):13200-1. PubMed ID: 19722487
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms.
    Chen X
    Phys Chem Chem Phys; 2015 Nov; 17(43):29340-3. PubMed ID: 26473179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced electrocatalytic stability of platinum nanoparticles supported on a nitrogen-doped composite of carbon nanotubes and mesoporous titania under oxygen reduction conditions.
    Masa J; Bordoloi A; Muhler M; Schuhmann W; Xia W
    ChemSusChem; 2012 Mar; 5(3):523-5. PubMed ID: 22378635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons.
    Cheon JY; Kim JH; Kim JH; Goddeti KC; Park JY; Joo SH
    J Am Chem Soc; 2014 Jun; 136(25):8875-8. PubMed ID: 24911055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active sites and mechanisms for oxygen reduction reaction on nitrogen-doped carbon alloy catalysts: Stone-Wales defect and curvature effect.
    Chai GL; Hou Z; Shu DJ; Ikeda T; Terakura K
    J Am Chem Soc; 2014 Oct; 136(39):13629-40. PubMed ID: 25216893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tunable ternary (N, P, B)-doped porous nanocarbons and their catalytic properties for oxygen reduction reaction.
    Zhao S; Liu J; Li C; Ji W; Yang M; Huang H; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22297-304. PubMed ID: 25421223
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Convenient immobilization of Pt-Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation.
    Wang X; Xue H; Yang L; Wang H; Zang P; Qin X; Wang Y; Ma Y; Wu Q; Hu Z
    Nanotechnology; 2011 Sep; 22(39):395401. PubMed ID: 21891845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells.
    Yuan Y; Zhao B; Jeon Y; Zhong S; Zhou S; Kim S
    Bioresour Technol; 2011 May; 102(10):5849-54. PubMed ID: 21435866
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.
    Gao F; Zhao GL; Yang S; Spivey JJ
    J Am Chem Soc; 2013 Mar; 135(9):3315-8. PubMed ID: 22992014
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced oxygen reduction reactions in fuel cells on H-decorated and B-substituted graphene.
    Kong X; Chen Q; Sun Z
    Chemphyschem; 2013 Feb; 14(3):514-9. PubMed ID: 23303601
    [TBL] [Abstract][Full Text] [Related]  

  • 54. O2 reduction by lithium on Au(111) and Pt(111).
    Xu Y; Shelton WA
    J Chem Phys; 2010 Jul; 133(2):024703. PubMed ID: 20632766
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical Density Functional Theory Study of Electrocatalytic Activity of MN
    Kuzmin AV; Shainyan BA
    ACS Omega; 2021 Jan; 6(1):374-387. PubMed ID: 33458489
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical activation of commercial polyacrylonitrile-based carbon fiber for the oxygen reduction reaction.
    Xu H; Xia G; Liu H; Xia S; Lu Y
    Phys Chem Chem Phys; 2015 Mar; 17(12):7707-13. PubMed ID: 25712410
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells.
    Chen S; Chen Y; He G; He S; Schröder U; Hou H
    Biosens Bioelectron; 2012 Apr; 34(1):282-5. PubMed ID: 22336437
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study.
    Qiao L; Zheng WT; Xu H; Zhang L; Jiang Q
    J Chem Phys; 2007 Apr; 126(16):164702. PubMed ID: 17477619
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction.
    Yu D; Zhang Q; Dai L
    J Am Chem Soc; 2010 Nov; 132(43):15127-9. PubMed ID: 20929222
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions.
    Wang DW; Li F; Yin LC; Lu X; Chen ZG; Gentle IR; Lu GQ; Cheng HM
    Chemistry; 2012 Apr; 18(17):5345-51. PubMed ID: 22419436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.