These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22828629)

  • 21. An ultra-flexible plasmonic metamaterial film for efficient omnidirectional and broadband optical absorption.
    Zhang H; Feng L; Liang Y; Xu T
    Nanoscale; 2019 Jan; 11(2):437-443. PubMed ID: 30350835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiation of the high-order plasmonic modes of large gold nanospheres excited by surface plasmon polaritons.
    Chen JD; Xiang J; Jiang S; Dai QF; Tie SL; Lan S
    Nanoscale; 2018 May; 10(19):9153-9163. PubMed ID: 29725675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.
    Bouillard JS; Vilain S; Dickson W; Wurtz GA; Zayats AV
    Sci Rep; 2012; 2():829. PubMed ID: 23170197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scattering of surface plasmon polaritons at a planar interface by an embedded dielectric nanocube.
    Lee S; Kim H; Lee J; Kim C
    Opt Express; 2017 Apr; 25(8):9105-9115. PubMed ID: 28437985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy.
    Umakoshi T; Saito Y; Verma P
    Nanoscale; 2016 Mar; 8(10):5634-40. PubMed ID: 26892672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy.
    Chen K; Adato R; Altug H
    ACS Nano; 2012 Sep; 6(9):7998-8006. PubMed ID: 22920565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gold-black phosphorus nanostructured absorbers for efficient light trapping in the mid-infrared.
    Audhkhasi R; Povinelli ML
    Opt Express; 2020 Jun; 28(13):19562-19570. PubMed ID: 32672230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broadband and wide-angle light absorption of organic solar cells based on multiple-depths metal grating.
    Liu X; Wang D; Yang Y; Chen ZH; Fei H; Cao B; Zhang M; Cui Y; Hao Y; Jian A
    Opt Express; 2019 Jun; 27(12):A596-A610. PubMed ID: 31252840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient plasmon-mediated electron injection into cerium oxide from embedded silver nanoparticles.
    Pelli Cresi JS; Spadaro MC; D'Addato S; Valeri S; Benedetti S; Di Bona A; Catone D; Di Mario L; O'Keeffe P; Paladini A; Bertoni G; Luches P
    Nanoscale; 2019 May; 11(21):10282-10291. PubMed ID: 31099368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Turning the corner: efficient energy transfer in bent plasmonic nanoparticle chain waveguides.
    Solis D; Paul A; Olson J; Slaughter LS; Swanglap P; Chang WS; Link S
    Nano Lett; 2013 Oct; 13(10):4779-84. PubMed ID: 24020385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal.
    Shen S; Tang J; Yu J; Zhou L; Zhou Y
    Opt Express; 2019 Sep; 27(18):24989-24999. PubMed ID: 31510379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption.
    Lobet M; Lard M; Sarrazin M; Deparis O; Henrard L
    Opt Express; 2014 May; 22(10):12678-90. PubMed ID: 24921385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrafast Electron Emission from a Sharp Metal Nanotaper Driven by Adiabatic Nanofocusing of Surface Plasmons.
    Vogelsang J; Robin J; Nagy BJ; Dombi P; Rosenkranz D; Schiek M; Groß P; Lienau C
    Nano Lett; 2015 Jul; 15(7):4685-91. PubMed ID: 26061633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.