These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 22828930)
1. Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. Tran PD; Xi L; Batabyal SK; Wong LH; Barber J; Loo JS Phys Chem Chem Phys; 2012 Sep; 14(33):11596-9. PubMed ID: 22828930 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen. Wu MC; Hiltunen J; Sápi A; Avila A; Larsson W; Liao HC; Huuhtanen M; Tóth G; Shchukarev A; Laufer N; Kukovecz Á; Kónya Z; Mikkola JP; Keiski R; Su WF; Chen YF; Jantunen H; Ajayan PM; Vajtai R; Kordás K ACS Nano; 2011 Jun; 5(6):5025-30. PubMed ID: 21568315 [TBL] [Abstract][Full Text] [Related]
3. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production. Foo WJ; Zhang C; Ho GW Nanoscale; 2013 Jan; 5(2):759-64. PubMed ID: 23228941 [TBL] [Abstract][Full Text] [Related]
4. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. Ghasemi S; Rahimnejad S; Setayesh SR; Rohani S; Gholami MR J Hazard Mater; 2009 Dec; 172(2-3):1573-8. PubMed ID: 19735982 [TBL] [Abstract][Full Text] [Related]
5. Heterojunction synergies in titania-supported gold photocatalysts: implications for solar hydrogen production. Jovic V; Smith KE; Idriss H; Waterhouse GI ChemSusChem; 2015 Aug; 8(15):2551-9. PubMed ID: 26105614 [TBL] [Abstract][Full Text] [Related]
6. Photocatalytic hydrogen evolution from carbon-neutral oxalate with 2-phenyl-4-(1-naphthyl)quinolinium ion and metal nanoparticles. Yamada Y; Miyahigashi T; Ohkubo K; Fukuzumi S Phys Chem Chem Phys; 2012 Aug; 14(30):10564-71. PubMed ID: 22751574 [TBL] [Abstract][Full Text] [Related]
7. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Reisner E; Fontecilla-Camps JC; Armstrong FA Chem Commun (Camb); 2009 Feb; (5):550-2. PubMed ID: 19283287 [TBL] [Abstract][Full Text] [Related]
8. Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst. Zhao B; Mele G; Pio I; Li J; Palmisano L; Vasapollo G J Hazard Mater; 2010 Apr; 176(1-3):569-74. PubMed ID: 20004519 [TBL] [Abstract][Full Text] [Related]
9. H₂ production by renewables photoreforming on Pt-Au/TiO₂ catalysts activated by reduction. Gallo A; Montini T; Marelli M; Minguzzi A; Gombac V; Psaro R; Fornasiero P; Dal Santo V ChemSusChem; 2012 Sep; 5(9):1800-11. PubMed ID: 22696301 [TBL] [Abstract][Full Text] [Related]
11. One-pot synthesis of imines from alcohols and amines with TiO2 loading Pt nanoparticles under UV irradiation. Shiraishi Y; Ikeda M; Tsukamoto D; Tanaka S; Hirai T Chem Commun (Camb); 2011 Apr; 47(16):4811-3. PubMed ID: 21416066 [TBL] [Abstract][Full Text] [Related]
12. The effect of dissolved oxygen on the 1,4-dioxane degradation with TiO2 and Au-TiO2 photocatalysts. Youn NK; Heo JE; Joo OS; Lee H; Kim J; Min BK J Hazard Mater; 2010 May; 177(1-3):216-21. PubMed ID: 20034741 [TBL] [Abstract][Full Text] [Related]
13. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Daskalaki VM; Antoniadou M; Li Puma G; Kondarides DI; Lianos P Environ Sci Technol; 2010 Oct; 44(19):7200-5. PubMed ID: 20423075 [TBL] [Abstract][Full Text] [Related]
14. Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst. Takeuchi M; Hidaka M; Anpo M J Hazard Mater; 2012 Oct; 237-238():133-9. PubMed ID: 22947182 [TBL] [Abstract][Full Text] [Related]
15. Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis. Pearson A; Zheng H; Kalantar-Zadeh K; Bhargava SK; Bansal V Langmuir; 2012 Oct; 28(40):14470-5. PubMed ID: 22989080 [TBL] [Abstract][Full Text] [Related]
16. How absorbed hydrogen affects the catalytic activity of transition metals. Aleksandrov HA; Kozlov SM; Schauermann S; Vayssilov GN; Neyman KM Angew Chem Int Ed Engl; 2014 Dec; 53(49):13371-5. PubMed ID: 25294745 [TBL] [Abstract][Full Text] [Related]
17. Morphology of metal nanoparticles photodeposited on TiO2/silical gel and photothermal activity for destruction of ethylene. Hu C; Lin LY; Hu XX J Environ Sci (China); 2006; 18(1):76-82. PubMed ID: 20050552 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. Lei P; Wang F; Gao X; Ding Y; Zhang S; Zhao J; Liu S; Yang M J Hazard Mater; 2012 Aug; 227-228():185-94. PubMed ID: 22658211 [TBL] [Abstract][Full Text] [Related]
19. Enhancing photocatalytic activities of titanium dioxide via well-dispersed copper nanoparticles. Dong J; Ye J; Ariyanti D; Wang Y; Wei S; Gao W Chemosphere; 2018 Aug; 204():193-201. PubMed ID: 29656155 [TBL] [Abstract][Full Text] [Related]
20. Photocatalytic degradation of the herbicide pendimethalin using nanoparticles of BaTiO3/TiO2 prepared by gel to crystalline conversion method: a kinetic approach. Gomathi Devi LN; Krishnamurthy G J Environ Sci Health B; 2008 Sep; 43(7):553-61. PubMed ID: 18803109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]