These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22829150)

  • 1. Hydrogen-bonded assembly of methanol on Cu(111).
    Lawton TJ; Carrasco J; Baber AE; Michaelides A; Sykes EC
    Phys Chem Chem Phys; 2012 Sep; 14(33):11846-52. PubMed ID: 22829150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces.
    Murphy CJ; Carrasco J; Lawton TJ; Liriano ML; Baber AE; Lewis EA; Michaelides A; Sykes EC
    J Chem Phys; 2014 Jul; 141(1):014701. PubMed ID: 25005297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum tunneling enabled self-assembly of hydrogen atoms on Cu(111).
    Jewell AD; Peng G; Mattera MF; Lewis EA; Murphy CJ; Kyriakou G; Mavrikakis M; Sykes EC
    ACS Nano; 2012 Nov; 6(11):10115-21. PubMed ID: 23030641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical transformations drive complex self-assembly of uracil on close-packed coinage metal surfaces.
    Papageorgiou AC; Fischer S; Reichert J; Diller K; Blobner F; Klappenberger F; Allegretti F; Seitsonen AP; Barth JV
    ACS Nano; 2012 Mar; 6(3):2477-86. PubMed ID: 22356544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal interactions of CO molecules on a one-dimensional substrate.
    Feng M; Cabrera-Sanfelix P; Lin C; Arnau A; Sánchez-Portal D; Zhao J; Echenique PM; Petek H
    ACS Nano; 2011 Nov; 5(11):8877-83. PubMed ID: 21980915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of hydrogen-bridged cytosine dimers on Cu(110).
    Frankel DJ; Chen Q; Richardson NV
    J Chem Phys; 2006 May; 124(20):204704. PubMed ID: 16774361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen and coordination bonding supramolecular structures of trimesic acid on Cu(110).
    Classen T; Lingenfelder M; Wang Y; Chopra R; Virojanadara C; Starke U; Costantini G; Fratesi G; Fabris S; de Gironcoli S; Baroni S; Haq S; Raval R; Kern K
    J Phys Chem A; 2007 Dec; 111(49):12589-603. PubMed ID: 17994713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-adsorption of water and hydrogen on Ni(111).
    Shan J; Aarts JF; Kleyn AW; Juurlink LB
    Phys Chem Chem Phys; 2008 Aug; 10(32):4994-5003. PubMed ID: 18688545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of meta-aminobenzoate on Cu(110).
    Rabot C; Hori M; Katano S; Kim Y; Kawai M
    Langmuir; 2009 May; 25(10):5504-8. PubMed ID: 19371044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen reactivity on highly-hydroxylated TiO2(110) surfaces prepared via carboxylic acid adsorption and photolysis.
    Du Y; Petrik NG; Deskins NA; Wang Z; Henderson MA; Kimmel GA; Lyubinetsky I
    Phys Chem Chem Phys; 2012 Mar; 14(9):3066-74. PubMed ID: 22108618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption, interaction, and manipulation of dibutyl sulfide on cu{111}.
    Jensen SC; Baber AE; Tierney HL; Sykes EC
    ACS Nano; 2007 Aug; 1(1):22-9. PubMed ID: 19203127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface composition of materials used as catalysts for methanol steam reforming: a theoretical study.
    Lim KH; Moskaleva LV; Rösch N
    Chemphyschem; 2006 Aug; 7(8):1802-12. PubMed ID: 16807960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation and contingent metal/surface reactivity of 1,3,8,10-tetraazaperopyrene (TAPP) on Cu(111).
    Matena M; Stöhr M; Riehm T; Björk J; Martens S; Dyer MS; Persson M; Lobo-Checa J; Müller K; Enache M; Wadepohl H; Zegenhagen J; Jung TA; Gade LH
    Chemistry; 2010 Feb; 16(7):2079-91. PubMed ID: 20077537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimethyl methylphosphonate decomposition on Cu surfaces: supported Cu nanoclusters and films on TiO2(110).
    Ma S; Zhou J; Kang YC; Reddic JE; Chen DA
    Langmuir; 2004 Oct; 20(22):9686-94. PubMed ID: 15491203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions.
    Rodriguez JA; Illas F
    Phys Chem Chem Phys; 2012 Jan; 14(2):427-38. PubMed ID: 22108864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of intact methanol on Ru(0001).
    Gazdzicki P; Uvdal P; Jakob P
    J Chem Phys; 2009 Jun; 130(22):224703. PubMed ID: 19530780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure sensitivity of methanol electrooxidation on transition metals.
    Ferrin P; Mavrikakis M
    J Am Chem Soc; 2009 Oct; 131(40):14381-9. PubMed ID: 19754206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of supramolecular binding motifs induced by substrate registry: formation of self-assembled macrocycles and chain-like patterns.
    Fendt LA; Stöhr M; Wintjes N; Enache M; Jung TA; Diederich F
    Chemistry; 2009 Oct; 15(42):11139-50. PubMed ID: 19760724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-assisted formation, assembly, and dynamics of planar organometallic macrocycles and zigzag shaped polymer chains with C-Cu-C bonds.
    Fan Q; Wang C; Han Y; Zhu J; Kuttner J; Hilt G; Gottfried JM
    ACS Nano; 2014 Jan; 8(1):709-18. PubMed ID: 24328267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.