BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22829298)

  • 1. Evaluation of detector material and radiation source position on Compton camera's ability for multitracer imaging.
    Uche CZ; Round WH; Cree MJ
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):357-64. PubMed ID: 22829298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GEANT4 simulation of the effects of Doppler energy broadening in Compton imaging.
    Uche CZ; Cree MJ; Round WH
    Australas Phys Eng Sci Med; 2011 Sep; 34(3):409-14. PubMed ID: 21556971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo evaluation of three Compton camera absorbers.
    Uche CZ; Round WH; Cree MJ
    Australas Phys Eng Sci Med; 2011 Sep; 34(3):351-60. PubMed ID: 21710232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Monte Carlo study for optimizing the detector of SPECT imaging using a XCAT human phantom.
    Khoshakhlagh M; Pirayesh Islamian J; Abedi SM; Mahmoudian B; Shayesteh Azar M
    Nucl Med Rev Cent East Eur; 2017; 20(1):10-14. PubMed ID: 28198517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity analysis of the efficiency of Compton camera to the detector parameters using the GEANT4 computer code.
    Niknami M; Hosseini SA; Loushab ME
    Appl Radiat Isot; 2021 Oct; 176():109883. PubMed ID: 34352529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of fully 3-D emission mammotomography with a compact cadmium zinc telluride detector.
    Brzymialkiewicz CN; Tornai MP; McKinley RL; Bowsher JE
    IEEE Trans Med Imaging; 2005 Jul; 24(7):868-77. PubMed ID: 16011316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling.
    Staelens S; Strul D; Santin G; Vandenberghe S; Koole M; D'Asseler Y; Lemahieu I; Van de Walle R
    Phys Med Biol; 2003 Sep; 48(18):3021-42. PubMed ID: 14529208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical optimization of an annulus Compton suppression system using Monte Carlo simulation.
    Han J; Lee KB; Park TS; Lee JM; Lee SH
    Appl Radiat Isot; 2013 Nov; 81():132-5. PubMed ID: 23583087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pinhole gamma camera with optical depth-of-interaction elimination.
    Korevaar MA; Heemskerk JW; Beekman FJ
    Phys Med Biol; 2009 Jul; 54(13):N267-72. PubMed ID: 19521006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photon-counting spectral computed tomography using silicon strip detectors: a feasibility study.
    Bornefalk H; Danielsson M
    Phys Med Biol; 2010 Apr; 55(7):1999-2022. PubMed ID: 20299720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EGS5 simulations to design a Ce:GAGG scintillator based Compton camera.
    Malik AH; Shimazoe K; Takahashi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5147-50. PubMed ID: 24110894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of myocardial perfusion imaging using thallium-201 between a new cadmium-zinc-telluride cardiac camera and a conventional SPECT camera.
    Songy B; Lussato D; Guernou M; Queneau M; Geronazzo R
    Clin Nucl Med; 2011 Sep; 36(9):776-80. PubMed ID: 21825848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compton camera study for high efficiency SPECT and benchmark with Anger system.
    Fontana M; Dauvergne D; Létang JM; Ley JL; Testa É
    Phys Med Biol; 2017 Nov; 62(23):8794-8812. PubMed ID: 28994664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras.
    Mackin D; Polf J; Peterson S; Beddar S
    Med Phys; 2013 Jan; 40(1):012402. PubMed ID: 23298111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera.
    Gambhir SS; Berman DS; Ziffer J; Nagler M; Sandler M; Patton J; Hutton B; Sharir T; Haim SB; Haim SB
    J Nucl Med; 2009 Apr; 50(4):635-43. PubMed ID: 19339672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the Compton camera for measuring prompt gamma rays in boron neutron capture therapy.
    Gong CH; Tang XB; Shu DY; Yu HY; Geng CR
    Appl Radiat Isot; 2017 Jun; 124():62-67. PubMed ID: 28342380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compton and proximity imaging of
    Caravaca J; Huh Y; Gullberg GT; Seo Y
    IEEE Trans Radiat Plasma Med Sci; 2022 Nov; 6(8):904-915. PubMed ID: 36338821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a wire-mesh collimator for gamma cameras.
    Saripan MI; Petrou M; Wells K
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1598-612. PubMed ID: 17867352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a very high-resolution small animal PET scanner using a silicon scatter detector insert.
    Park SJ; Rogers WL; Clinthorne NH
    Phys Med Biol; 2007 Aug; 52(15):4653-77. PubMed ID: 17634656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional and multienergy gamma-ray simultaneous imaging by using a Si/CdTe Compton camera.
    Suzuki Y; Yamaguchi M; Odaka H; Shimada H; Yoshida Y; Torikai K; Satoh T; Arakawa K; Kawachi N; Watanabe S; Takeda S; Ishikawa SN; Aono H; Watanabe S; Takahashi T; Nakano T
    Radiology; 2013 Jun; 267(3):941-7. PubMed ID: 23418002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.