These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 22829348)

  • 21. Potential commercial applications of microbial surfactants.
    Banat IM; Makkar RS; Cameotra SS
    Appl Microbiol Biotechnol; 2000 May; 53(5):495-508. PubMed ID: 10855707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of cyanobacteria in biotechnology.
    Abed RM; Dobretsov S; Sudesh K
    J Appl Microbiol; 2009 Jan; 106(1):1-12. PubMed ID: 19191979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.
    Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S
    Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products.
    Wolicka D; Suszek A; Borkowski A; Bielecka A
    Bioresour Technol; 2009 Jul; 100(13):3221-7. PubMed ID: 19289274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioremediation of marine sediments impacted by petroleum.
    da Silva AC; de Oliveira FJ; Bernardes DS; de França FP
    Appl Biochem Biotechnol; 2009 May; 153(1-3):58-66. PubMed ID: 19148778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume.
    Kao CM; Chen CS; Tsa FY; Yang KH; Chien CC; Liang SH; Yang CA; Chen SC
    J Hazard Mater; 2010 Jun; 178(1-3):409-16. PubMed ID: 20185233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging technologies in bioremediation: constraints and opportunities.
    Rayu S; Karpouzas DG; Singh BK
    Biodegradation; 2012 Nov; 23(6):917-26. PubMed ID: 22836784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Microbiological and production characteristics of the high-temperature Kongdian bed revealed during field trial of biotechnology for the enhancement of oil recovery].
    Nazina TN; Grigor'ian AA; Feng Ts; Shestakova NM; Babich TL; Pavlova NK; Ivoĭlov VS; Ni F; Wang J; She Y; Xiang T; Mei B; Luo Z; Beliaev SS; Ivanov MV
    Mikrobiologiia; 2007; 76(3):340-53. PubMed ID: 17633409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ex situ bioremediation of oil-contaminated soil.
    Lin TC; Pan PT; Cheng SS
    J Hazard Mater; 2010 Apr; 176(1-3):27-34. PubMed ID: 20053499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution.
    Kalin RM
    Curr Opin Microbiol; 2004 Jun; 7(3):227-38. PubMed ID: 15196489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a microbial process for the recovery of petroleum oil from depleted reservoirs at 91-96°C.
    Arora P; Ranade DR; Dhakephalkar PK
    Bioresour Technol; 2014 Aug; 165():274-8. PubMed ID: 24746769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patent power. The oil-eating bacterium that spawned an industry.
    Erickson D
    Sci Am; 1990 Jun; 262(6):88, 93. PubMed ID: 2343297
    [No Abstract]   [Full Text] [Related]  

  • 33. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.
    De Almeida DG; Soares Da Silva RC; Luna JM; Rufino RD; Santos VA; Banat IM; Sarubbo LA
    Front Microbiol; 2016; 7():1718. PubMed ID: 27843439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels.
    Al-Mutairi N; Bufarsan A; Al-Rukaibi F
    Chemosphere; 2008 Dec; 74(1):142-8. PubMed ID: 18824252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas.
    Bojes HK; Pope PG
    Regul Toxicol Pharmacol; 2007 Apr; 47(3):288-95. PubMed ID: 17291653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.
    Alimahmoodi M; Mulligan CN
    Bioresour Technol; 2011 Jan; 102(2):690-6. PubMed ID: 20846858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of cyclodextrins in soil.
    Fenyvesi E; Gruiz K; Verstichel S; De Wilde B; Leitgib L; Csabai K; Szaniszlo N
    Chemosphere; 2005 Aug; 60(8):1001-8. PubMed ID: 15993146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioremediation: an important alternative for soil and industrial wastes clean-up.
    Soccol CR; Vandenberghe LP; Woiciechowski AL; Thomaz-Soccol V; Correia CT; Pandey A
    Indian J Exp Biol; 2003 Sep; 41(9):1030-45. PubMed ID: 15242296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Re-use of remediated soils for the bioremediation of waste oil sludge.
    Makadia TH; Adetutu EM; Simons KL; Jardine D; Sheppard PJ; Ball AS
    J Environ Manage; 2011 Mar; 92(3):866-71. PubMed ID: 21115217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.
    Mohsenzadeh F; Nasseri S; Mesdaghinia A; Nabizadeh R; Zafari D; Khodakaramian G; Chehregani A
    Ecotoxicol Environ Saf; 2010 May; 73(4):613-9. PubMed ID: 19932506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.