These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22829441)

  • 1. Template-free pseudomorphic synthesis of tungsten carbide nanorods.
    Yan Y; Zhang L; Qi X; Song H; Wang JY; Zhang H; Wang X
    Small; 2012 Nov; 8(21):3350-6. PubMed ID: 22829441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites.
    Wang B; Tian C; Wang L; Wang R; Fu H
    Nanotechnology; 2010 Jan; 21(2):025606. PubMed ID: 19955617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation.
    Liu F; Lee JY; Zhou WJ
    Small; 2006 Jan; 2(1):121-8. PubMed ID: 17193567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Pt nanopetals on highly ordered silicon nanocones for enhanced methanol electrooxidation activity.
    Tiwari JN; Tiwari RN; Lin KL
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2231-7. PubMed ID: 20735093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting.
    Garcia-Esparza AT; Cha D; Ou Y; Kubota J; Domen K; Takanabe K
    ChemSusChem; 2013 Jan; 6(1):168-81. PubMed ID: 23255471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation.
    Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX
    Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation.
    Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J
    J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-oxidation of methanol on TiO2 nanotube supported platinum electrodes.
    Maiyalagan T; Viswanathan B; Varadaraju UV
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2067-71. PubMed ID: 17025126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tungsten carbide nanotubes supported platinum nanoparticles as a potential sensing platform for oxalic acid.
    Maiyalagan T; Kannan P; Jönsson-Niedziolka M; Niedziolka-Jönsson J
    Anal Chem; 2014 Aug; 86(15):7849-57. PubMed ID: 25022882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fabrication of TiO(2) nanorods from TiO(2) nanoparticles by organic protection assisted template method.
    Luo Z; Yang W; Peng A; Zeng Y; Yao J
    Nanotechnology; 2009 Aug; 20(34):345601. PubMed ID: 19652270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel tungsten carbide nanorods: an intrinsic peroxidase mimetic with high activity and stability in aqueous and organic solvents.
    Li N; Yan Y; Xia BY; Wang JY; Wang X
    Biosens Bioelectron; 2014 Apr; 54():521-7. PubMed ID: 24325981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sonochemical synthesis and characterization of Cu(1-x)Ni(x)WO4 nanoparticles/nanorods and their application in electrocatalytic hydrogen evolution.
    Selvan RK; Gedanken A
    Nanotechnology; 2009 Mar; 20(10):105602. PubMed ID: 19417522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media.
    Singh B; Murad L; Laffir F; Dickinson C; Dempsey E
    Nanoscale; 2011 Aug; 3(8):3334-49. PubMed ID: 21717025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.
    Siriviriyanun A; Imae T
    Phys Chem Chem Phys; 2013 Apr; 15(14):4921-9. PubMed ID: 23435635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pt-Pd alloy nanoparticle-decorated carbon nanotubes: a durable and methanol tolerant oxygen reduction electrocatalyst.
    Ghosh S; Sahu RK; Raj CR
    Nanotechnology; 2012 Sep; 23(38):385602. PubMed ID: 22948751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pt nanoparticles residing in the pores of porous LaNiO₃ nanocubes as high-efficiency electrocatalyst for direct methanol fuel cells.
    Yu N; Kuai L; Wang Q; Geng B
    Nanoscale; 2012 Sep; 4(17):5386-93. PubMed ID: 22820999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of mesoporous silica nanobamboo with highly dispersed tungsten carbide nanoparticles.
    Huang Y; Deng F; Ni C; Chen JG; Vlachos DG
    Dalton Trans; 2012 Jun; 41(23):6914-8. PubMed ID: 22532100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A promising approach to the synthesis of 3D nanoporous graphitic carbon as a unique electrocatalyst support for methanol oxidation.
    Tiwari JN; Tiwari RN; Chang YM; Lin KL
    ChemSusChem; 2010 Apr; 3(4):460-6. PubMed ID: 20101666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.