These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 22829529)

  • 21. Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.
    de Vries JG
    Chem Rec; 2016 Dec; 16(6):2783-2796. PubMed ID: 27763716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotransformation of lignocellulosic materials into value-added products-A review.
    Bilal M; Asgher M; Iqbal HM; Hu H; Zhang X
    Int J Biol Macromol; 2017 May; 98():447-458. PubMed ID: 28163129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.
    Liu S
    Biotechnol Adv; 2010; 28(5):563-82. PubMed ID: 20493246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.
    Singh R; Krishna BB; Kumar J; Bhaskar T
    Bioresour Technol; 2016 Jan; 199():398-407. PubMed ID: 26350883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel.
    Nitzsche R; Budzinski M; Gröngröft A
    Bioresour Technol; 2016 Jan; 200():928-39. PubMed ID: 26609950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Key technologies for bioethanol production from lignocellulose.
    Chen H; Qiu W
    Biotechnol Adv; 2010; 28(5):556-62. PubMed ID: 20546879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass].
    Fang X; Qin Y; Li X; Wang L; Wang T; Zhu M; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):864-9. PubMed ID: 20954385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals.
    Binder JB; Raines RT
    J Am Chem Soc; 2009 Feb; 131(5):1979-85. PubMed ID: 19159236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ product recovery (ISPR) by crystallization: basic principles, design, and potential applications in whole-cell biocatalysis.
    Buque-Taboada EM; Straathof AJ; Heijnen JJ; van der Wielen LA
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):1-12. PubMed ID: 16607527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alcoholysis: A Promising Technology for Conversion of Lignocellulose and Platform Chemicals.
    Zhu S; Guo J; Wang X; Wang J; Fan W
    ChemSusChem; 2017 Jun; 10(12):2547-2559. PubMed ID: 28485128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation.
    Talebnia F; Karakashev D; Angelidaki I
    Bioresour Technol; 2010 Jul; 101(13):4744-53. PubMed ID: 20031394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis.
    Clouthier CM; Pelletier JN
    Chem Soc Rev; 2012 Feb; 41(4):1585-605. PubMed ID: 22234546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates.
    Ludwig D; Amann M; Hirth T; Rupp S; Zibek S
    Bioresour Technol; 2013 Apr; 133():455-61. PubMed ID: 23454802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production.
    Doran-Peterson J; Jangid A; Brandon SK; DeCrescenzo-Henriksen E; Dien B; Ingram LO
    Methods Mol Biol; 2009; 581():263-80. PubMed ID: 19768628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consolidated bioprocessing of cellulosic biomass: an update.
    Lynd LR; van Zyl WH; McBride JE; Laser M
    Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Application of process engineering to remove lignocellulose fermentation inhibitors].
    Wang L; Xia M; Chen H
    Sheng Wu Gong Cheng Xue Bao; 2014 May; 30(5):716-25. PubMed ID: 25118395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.
    Brethauer S; Wyman CE
    Bioresour Technol; 2010 Jul; 101(13):4862-74. PubMed ID: 20006926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-refinery as the bio-inspired process to bulk chemicals.
    Sanders J; Scott E; Weusthuis R; Mooibroek H
    Macromol Biosci; 2007 Feb; 7(2):105-17. PubMed ID: 17295397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Process modeling of comprehensive integrated forest biorefinery--an integrated approach.
    Huang HJ; Lin W; Ramaswamy S; Tschirner U
    Appl Biochem Biotechnol; 2009 May; 154(1-3):26-37. PubMed ID: 19165631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.