BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22829754)

  • 1. Shaping the dynamics of a bidirectional neural interface.
    Vato A; Semprini M; Maggiolini E; Szymanski FD; Fadiga L; Panzeri S; Mussa-Ivaldi FA
    PLoS Comput Biol; 2012; 8(7):e1002578. PubMed ID: 22829754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.
    Vato A; Szymanski FD; Semprini M; Mussa-Ivaldi FA; Panzeri S
    PLoS One; 2014; 9(3):e91677. PubMed ID: 24626393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Brain-Machine Interface: a novel paradigm for bidirectional interaction between brains and dynamical systems.
    Szymanski FD; Semprini M; Mussa-Ivaldi FA; Fadiga L; Panzeri S; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4592-5. PubMed ID: 22255360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-linear mapping algorithm shaping the control policy of a bidirectional brain machine interface.
    Boi F; Semprini M; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3052-3055. PubMed ID: 28268955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new full closed-loop brain-machine interface approach based on neural activity: A study based on modeling and experimental studies.
    Amiri M; Nazari S; Jafari AH; Makkiabadi B
    Heliyon; 2023 Mar; 9(3):e13766. PubMed ID: 36851970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.
    Marzullo TC; Lehmkuhle MJ; Gage GJ; Kipke DR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):117-26. PubMed ID: 20144922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional brain-computer interfaces.
    Hughes C; Herrera A; Gaunt R; Collinger J
    Handb Clin Neurol; 2020; 168():163-181. PubMed ID: 32164851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Effects of Open- and Closed-Loop Intracortical Microstimulation on Firing Patterns of Neurons in Distant Cortical Areas.
    Averna A; Pasquale V; Murphy MD; Rogantin MP; Van Acker GM; Nudo RJ; Chiappalone M; Guggenmos DJ
    Cereb Cortex; 2020 May; 30(5):2879-2896. PubMed ID: 31832642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Neurophysiological Representation of Imagined Somatosensory Percepts in Human Cortex.
    Bashford L; Rosenthal I; Kellis S; Pejsa K; Kramer D; Lee B; Liu C; Andersen RA
    J Neurosci; 2021 Mar; 41(10):2177-2185. PubMed ID: 33483431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A parametric study of intracortical microstimulation in behaving rats for the development of artificial sensory channels.
    Semprini M; Bennicelli L; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():799-802. PubMed ID: 23366013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artifact-free recordings in human bidirectional brain-computer interfaces.
    Weiss JM; Flesher SN; Franklin R; Collinger JL; Gaunt RA
    J Neural Eng; 2019 Feb; 16(1):016002. PubMed ID: 30444217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity.
    Lei Y; Perez MA
    J Physiol; 2017 Sep; 595(18):6203-6217. PubMed ID: 28513860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of penicillin epileptogenesis in rat somatosensory and motor cortex.
    Holmes O; Wallace MN; Campbell AM
    Q J Exp Physiol; 1987 Oct; 72(4):439-52. PubMed ID: 2827221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laminar analysis of movement direction information in local field potentials of the rat motor cortex.
    Gage GJ; Kawahara C; Ross SE; Marzullo TC; Kipke DR
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2589-92. PubMed ID: 17946968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What single-cell stimulation has told us about neural coding.
    Doron G; Brecht M
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140204. PubMed ID: 26240419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serial recording of sensory, corticomotor, and brainstem-derived motor evoked potentials in the rat.
    Schlag MG; Hopf R; Redl H
    Somatosens Mot Res; 2001; 18(2):106-16. PubMed ID: 11534774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensorimotor integration within the primary motor cortex by selective nerve fascicle stimulation.
    Ranieri F; Pellegrino G; Ciancio AL; Musumeci G; Noce E; Insola A; Diaz Balzani LA; Di Lazzaro V; Di Pino G
    J Physiol; 2022 Mar; 600(6):1497-1514. PubMed ID: 34921406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint cross-correlation analysis reveals complex, time-dependent functional relationship between cortical neurons and arm electromyograms.
    Zhuang KZ; Lebedev MA; Nicolelis MA
    J Neurophysiol; 2014 Dec; 112(11):2865-87. PubMed ID: 25210153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat.
    Hosp JA; Molina-Luna K; Hertler B; Atiemo CO; Stett A; Luft AR
    J Neurosci Methods; 2008 Jul; 172(2):255-62. PubMed ID: 18582949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.