These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 22830444)
1. Study of the air-water interfacial properties of biodegradable polyesters and their block copolymers with poly(ethylene glycol). Park HW; Choi J; Ohn K; Lee H; Kim JW; Won YY Langmuir; 2012 Aug; 28(31):11555-66. PubMed ID: 22830444 [TBL] [Abstract][Full Text] [Related]
2. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface. Kim HC; Lee H; Khetan J; Won YY Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595 [TBL] [Abstract][Full Text] [Related]
3. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA). Kim HC; Lee H; Jung H; Choi YH; Meron M; Lin B; Bang J; Won YY Soft Matter; 2015 Jul; 11(28):5666-77. PubMed ID: 26082950 [TBL] [Abstract][Full Text] [Related]
4. Air-Water Interfacial Properties of Chloroform-Spread versus Water-Spread Poly((d,l-lactic acid- co-glycolic acid)- block-ethylene glycol) (PLGA-PEG) Polymers. Kim HC; Arick DQ; Won YY Langmuir; 2018 Apr; 34(16):4874-4887. PubMed ID: 29602280 [TBL] [Abstract][Full Text] [Related]
5. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Jackson JK; Hung T; Letchford K; Burt HM Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895 [TBL] [Abstract][Full Text] [Related]
6. Two-dimensional self-assembly of linear poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers at the air-water interface. Joncheray TJ; Denoncourt KM; Meier MA; Schubert US; Duran RS Langmuir; 2007 Feb; 23(5):2423-9. PubMed ID: 17243736 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Hsu SH; Tang CM; Lin CC Biomaterials; 2004 Nov; 25(25):5593-601. PubMed ID: 15159075 [TBL] [Abstract][Full Text] [Related]
8. PEG-PLA block copolymer as potential drug carrier: preparation and characterization. Ben-Shabat S; Kumar N; Domb AJ Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of poly(ethylene glycol)-poly(D,L-lactide-co-glycolide) poly(ethylene glycol) tri-block co-polymers modified with collagen: a model surface suitable for cell interaction. Porjazoska A; Yilmaz OK; Baysal K; Cvetkovska M; Sirvanci S; Ercan F; Baysal BM J Biomater Sci Polym Ed; 2006; 17(3):323-40. PubMed ID: 16689018 [TBL] [Abstract][Full Text] [Related]
10. Surface characterization of functionalized polylactide through the coating with heterobifunctional poly(ethylene glycol)/polylactide block copolymers. Otsuka H; Nagasaki Y; Kataoka K Biomacromolecules; 2000; 1(1):39-48. PubMed ID: 11709841 [TBL] [Abstract][Full Text] [Related]
11. Monolayer formation of PBLG-PEO block copolymers at the air-water interface. Park Y; Choi YW; Park S; Cho CS; Fasolka MJ; Sohn D J Colloid Interface Sci; 2005 Mar; 283(2):322-8. PubMed ID: 15721901 [TBL] [Abstract][Full Text] [Related]
12. Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments. Penco M; Marcioni S; Ferruti P; D' Antone S; Deghenghi R Biomaterials; 1996 Aug; 17(16):1583-90. PubMed ID: 8842362 [TBL] [Abstract][Full Text] [Related]
13. The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone). Cho H; An J Biomaterials; 2006 Feb; 27(4):544-52. PubMed ID: 16099497 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of poly(L-lysine)-g-poly(D,L-lactic-co-glycolic acid) biodegradable micelles. Jeong JH; Byun Y; Park TG J Biomater Sci Polym Ed; 2003; 14(1):1-11. PubMed ID: 12635767 [TBL] [Abstract][Full Text] [Related]
16. Langmuir and Langmuir-Blodgett films of poly(ethylene oxide)-b-poly(epsilon-caprolactone) star-shaped block copolymers. Joncheray TJ; Denoncourt KM; Mathieu C; Meier MA; Schubert US; Duran RS Langmuir; 2006 Oct; 22(22):9264-71. PubMed ID: 17042541 [TBL] [Abstract][Full Text] [Related]
17. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol). von Burkersroda F; Gref R; Göpferich A Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807 [TBL] [Abstract][Full Text] [Related]
18. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels. Tarasevich BJ; Gutowska A; Li XS; Jeong BM J Biomed Mater Res A; 2009 Apr; 89(1):248-54. PubMed ID: 18464255 [TBL] [Abstract][Full Text] [Related]
20. Blends of poly(epsilon-caprolactone) and intermediate molar mass polystyrene as Langmuir films at the air/water interface. Li B; Esker AR Langmuir; 2007 Jan; 23(2):574-81. PubMed ID: 17209608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]