These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22830585)

  • 1. Solvent-dependent gating motions of an extremophilic lipase from Pseudomonas aeruginosa.
    Johnson QR; Nellas RB; Shen T
    Biochemistry; 2012 Aug; 51(31):6238-45. PubMed ID: 22830585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-induced α- to 3(10)-helix transition of an amphiphilic peptide.
    Nellas RB; Johnson QR; Shen T
    Biochemistry; 2013 Oct; 52(40):7137-44. PubMed ID: 24066804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DMSO enhanced conformational switch of an interfacial enzyme.
    Lindsay RJ; Johnson QR; Evangelista W; Nellas RB; Shen T
    Biopolymers; 2016 Dec; 105(12):864-72. PubMed ID: 27463323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Candida rugosa lipase at alkane-aqueous interfaces: a molecular dynamics study.
    James JJ; Lakshmi BS; Seshasayee AS; Gautam P
    FEBS Lett; 2007 Sep; 581(23):4377-83. PubMed ID: 17765226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies of essential dynamics of Pseudomonas cepacia lipase.
    Lee J; Suh SW; Shin S
    J Biomol Struct Dyn; 2000 Oct; 18(2):297-309. PubMed ID: 11089650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.
    Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I
    Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lid closure mechanism of Yarrowia lipolytica lipase in methanol investigated by molecular dynamics simulation.
    Jiang Y; Li L; Zhang H; Feng W; Tan T
    J Chem Inf Model; 2014 Jul; 54(7):2033-41. PubMed ID: 24954406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2.
    Peng R; Lin J; Wei D
    Appl Biochem Biotechnol; 2010 Oct; 162(3):733-43. PubMed ID: 19936633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of enzyme tolerance against organic solvents: Insights from molecular dynamics simulation.
    Mohtashami M; Fooladi J; Haddad-Mashadrizeh A; Housaindokht MR; Monhemi H
    Int J Biol Macromol; 2019 Feb; 122():914-923. PubMed ID: 30445665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-induced conformational switch of an interfacial protein.
    Johnson QR; Lindsay RJ; Nellas RB; Shen T
    Proteins; 2016 Jun; 84(6):820-7. PubMed ID: 26967808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic characterization of 30 kDa lipase from Pseudomonas aeruginosa ATCC 27853.
    Izrael-Zivkovic LT; Gojgic-Cvijovic GD; Gopcevic KR; Vrvic MM; Karadzic IM
    J Basic Microbiol; 2009 Oct; 49(5):452-62. PubMed ID: 19455522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function analysis of a new bacterial lipase: effect of local structure reorganization on lipase activity.
    Shirazi NH; Ranjbar B; Khajeh K; Moghadam TT
    Int J Biol Macromol; 2013 Mar; 54():180-5. PubMed ID: 23262387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of a double-lid movement in Pseudomonas aeruginosa lipase: insights from molecular dynamics simulations.
    Cherukuvada SL; Seshasayee AS; Raghunathan K; Anishetty S; Pennathur G
    PLoS Comput Biol; 2005 Aug; 1(3):e28. PubMed ID: 16110344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase.
    Trodler P; Schmid RD; Pleiss J
    BMC Struct Biol; 2009 May; 9():38. PubMed ID: 19476626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid residues involved in organic solvent-stability of the LST-03 lipase.
    Kawata T; Ogino H
    Biochem Biophys Res Commun; 2010 Sep; 400(3):384-8. PubMed ID: 20800576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Enzymatic Activity of Lipases Correlates with Polarity-Induced Conformational Changes: A Trp-Induced Quenching Fluorescence Study.
    Skjold-Jørgensen J; Bhatia VK; Vind J; Svendsen A; Bjerrum MJ; Farrens D
    Biochemistry; 2015 Jul; 54(27):4186-96. PubMed ID: 26087334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of an organic solvent-tolerant lipase and its cognate foldase of Pseudomonas aeruginosa CS-2 and the application of the immobilized recombinant lipase.
    Peng R; Lin J; Wei D
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):926-37. PubMed ID: 21720839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution.
    Kawata T; Ogino H
    Biotechnol Prog; 2009; 25(6):1605-11. PubMed ID: 19731302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.