BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22830677)

  • 1. Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states.
    Fujimoto KJ
    J Chem Phys; 2012 Jul; 137(3):034101. PubMed ID: 22830677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-density-fragment interaction approach for exciton-coupled circular dichroism spectra.
    Fujimoto KJ
    J Chem Phys; 2010 Sep; 133(12):124101. PubMed ID: 20886918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational dependence of the electronic coupling for singlet excitation energy transfer in DNA. An INDO/S study.
    Voityuk AA
    Phys Chem Chem Phys; 2010 Jul; 12(27):7403-8. PubMed ID: 20532402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electronic couplings in electron transfer and excitation energy transfer.
    Hsu CP
    Acc Chem Res; 2009 Apr; 42(4):509-18. PubMed ID: 19215069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reactive bond orbital investigation of the Diels-Alder reaction between 1,3-butadiene and ethylene: Energy decomposition, state correlation diagram, and electron density analyses.
    Hirao H
    J Comput Chem; 2008 Jul; 29(9):1399-407. PubMed ID: 18213608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic coupling calculations with transition charges, dipoles, and quadrupoles derived from electrostatic potential fitting.
    Fujimoto KJ
    J Chem Phys; 2014 Dec; 141(21):214105. PubMed ID: 25481127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridge-mediated excitation energy transfer pathways through protein media: a Slater determinant-based electronic coupling calculation combined with localized molecular orbitals.
    Kawatsu T; Matsuda K; Hasegawa JY
    J Phys Chem A; 2011 Oct; 115(39):10814-22. PubMed ID: 21861486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic coulombic coupling of excitation-energy transfer in xanthorhodopsin.
    Fujimoto KJ; Hayashi S
    J Am Chem Soc; 2009 Oct; 131(40):14152-3. PubMed ID: 19772318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum mechanical methods applied to excitation energy transfer: a comparative analysis on excitation energies and electronic couplings.
    Muñoz-Losa A; Curutchet C; Fdez Galván I; Mennucci B
    J Chem Phys; 2008 Jul; 129(3):034104. PubMed ID: 18647013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of fluorescence line-narrowed spectra in weakly coupled dimers in the presence of excitation energy transfer.
    Lin C; Reppert M; Feng X; Jankowiak R
    J Chem Phys; 2014 Jul; 141(3):035101. PubMed ID: 25053340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: an MS-CASPT2 study.
    Blancafort L; Voityuk AA
    J Chem Phys; 2014 Mar; 140(9):095102. PubMed ID: 24606381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mediated excitation energy transfer: Effects of bridge polarizability.
    Chen HC; You ZQ; Hsu CP
    J Chem Phys; 2008 Aug; 129(8):084708. PubMed ID: 19044842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation energy transfer in ion pairs of polymethine cyanine dyes: efficiency and dynamics.
    Ponterini G; Fiorini M; Vanossi D; Tatikolov AS; Momicchioli F
    J Phys Chem A; 2006 Jun; 110(24):7527-38. PubMed ID: 16774193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer.
    Ishizaki A; Fleming GR
    J Chem Phys; 2009 Jun; 130(23):234110. PubMed ID: 19548714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the influence of short-range electronic couplings on optical properties of molecular dimers: application to "special pairs" in photosynthesis.
    Madjet Mel-A; Müh F; Renger T
    J Phys Chem B; 2009 Sep; 113(37):12603-14. PubMed ID: 19697949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure and optical properties of dianionic and dicationic pi-dimers.
    Li Y; Li H; Zhao X; Chen M
    J Phys Chem A; 2010 Jul; 114(26):6972-7. PubMed ID: 20553013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface hopping dynamics using a locally diabatic formalism: charge transfer in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer.
    Plasser F; Granucci G; Pittner J; Barbatti M; Persico M; Lischka H
    J Chem Phys; 2012 Dec; 137(22):22A514. PubMed ID: 23249051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting.
    Huo P; Coker DF
    J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitonic coupling effect on the circular dichroism spectrum of sodium-pumping rhodopsin KR2.
    Fujimoto KJ; Inoue K
    J Chem Phys; 2020 Jul; 153(4):045101. PubMed ID: 32752712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.