These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 22830682)
1. Automatic identification of model reductions for discrete stochastic simulation. Wu S; Fu J; Li H; Petzold L J Chem Phys; 2012 Jul; 137(3):034106. PubMed ID: 22830682 [TBL] [Abstract][Full Text] [Related]
2. A multi-algorithm, multi-timescale method for cell simulation. Takahashi K; Kaizu K; Hu B; Tomita M Bioinformatics; 2004 Mar; 20(4):538-46. PubMed ID: 14990450 [TBL] [Abstract][Full Text] [Related]
3. Adaptive deployment of model reductions for tau-leaping simulation. Wu S; Fu J; Petzold LR J Chem Phys; 2015 May; 142(20):204108. PubMed ID: 26026435 [TBL] [Abstract][Full Text] [Related]
4. Efficient step size selection for the tau-leaping simulation method. Cao Y; Gillespie DT; Petzold LR J Chem Phys; 2006 Jan; 124(4):044109. PubMed ID: 16460151 [TBL] [Abstract][Full Text] [Related]
5. Stochastic simulation of chemical kinetics. Gillespie DT Annu Rev Phys Chem; 2007; 58():35-55. PubMed ID: 17037977 [TBL] [Abstract][Full Text] [Related]
6. A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks. Ramaswamy R; González-Segredo N; Sbalzarini IF J Chem Phys; 2009 Jun; 130(24):244104. PubMed ID: 19566139 [TBL] [Abstract][Full Text] [Related]
7. A weak second order tau-leaping method for chemical kinetic systems. Hu Y; Li T; Min B J Chem Phys; 2011 Jul; 135(2):024113. PubMed ID: 21766931 [TBL] [Abstract][Full Text] [Related]
8. Accelerated stochastic simulation algorithm for coupled chemical reactions with delays. Zhou W; Peng X; Yan Z; Wang Y Comput Biol Chem; 2008 Aug; 32(4):240-2. PubMed ID: 18467179 [TBL] [Abstract][Full Text] [Related]
9. Moment estimation for chemically reacting systems by extended Kalman filtering. Ruess J; Milias-Argeitis A; Summers S; Lygeros J J Chem Phys; 2011 Oct; 135(16):165102. PubMed ID: 22047267 [TBL] [Abstract][Full Text] [Related]
10. Stochastic simulation of chemically reacting systems using multi-core processors. Gillespie CS J Chem Phys; 2012 Jan; 136(1):014101. PubMed ID: 22239763 [TBL] [Abstract][Full Text] [Related]
12. Reduction and solution of the chemical master equation using time scale separation and finite state projection. Peles S; Munsky B; Khammash M J Chem Phys; 2006 Nov; 125(20):204104. PubMed ID: 17144687 [TBL] [Abstract][Full Text] [Related]
13. The finite state projection algorithm for the solution of the chemical master equation. Munsky B; Khammash M J Chem Phys; 2006 Jan; 124(4):044104. PubMed ID: 16460146 [TBL] [Abstract][Full Text] [Related]
14. A constrained approach to multiscale stochastic simulation of chemically reacting systems. Cotter SL; Zygalakis KC; Kevrekidis IG; Erban R J Chem Phys; 2011 Sep; 135(9):094102. PubMed ID: 21913748 [TBL] [Abstract][Full Text] [Related]
15. Integral tau methods for stiff stochastic chemical systems. Yang Y; Rathinam M; Shen J J Chem Phys; 2011 Jan; 134(4):044129. PubMed ID: 21280709 [TBL] [Abstract][Full Text] [Related]
16. Unbiased tau-leap methods for stochastic simulation of chemically reacting systems. Xu Z; Cai X J Chem Phys; 2008 Apr; 128(15):154112. PubMed ID: 18433195 [TBL] [Abstract][Full Text] [Related]
17. A multi-scaled approach for simulating chemical reaction systems. Burrage K; Tian T; Burrage P Prog Biophys Mol Biol; 2004; 85(2-3):217-34. PubMed ID: 15142745 [TBL] [Abstract][Full Text] [Related]