These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22830692)

  • 1. Optimizing conical intersections of solvated molecules: the combined spin-flip density functional theory/effective fragment potential method.
    Minezawa N; Gordon MS
    J Chem Phys; 2012 Jul; 137(3):034116. PubMed ID: 22830692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing minimum free-energy crossing points in solution: linear-response free energy/spin-flip density functional theory approach.
    Minezawa N
    J Chem Phys; 2014 Oct; 141(16):164118. PubMed ID: 25362283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing conical intersections by spin-flip density functional theory: application to ethylene.
    Minezawa N; Gordon MS
    J Phys Chem A; 2009 Nov; 113(46):12749-53. PubMed ID: 19905013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azomethane: nonadiabatic photodynamical simulations in solution.
    Ruckenbauer M; Barbatti M; Sellner B; Muller T; Lischka H
    J Phys Chem A; 2010 Dec; 114(48):12585-90. PubMed ID: 21070061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoisomerization of stilbene: a spin-flip density functional theory approach.
    Minezawa N; Gordon MS
    J Phys Chem A; 2011 Jul; 115(27):7901-11. PubMed ID: 21639100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of the analytic energy gradient for the combined time-dependent density functional theory/effective fragment potential method: application to excited-state molecular dynamics simulations.
    Minezawa N; De Silva N; Zahariev F; Gordon MS
    J Chem Phys; 2011 Feb; 134(5):054111. PubMed ID: 21303096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin.
    Nagata T; Fedorov DG; Sawada T; Kitaura K; Gordon MS
    J Chem Phys; 2011 Jan; 134(3):034110. PubMed ID: 21261333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand exchange reaction involving Ru(III) compounds in aqueous solution: a hybrid quantum mechanical/effective fragment potential study.
    Aguilar CM; Rocha WR
    J Phys Chem B; 2011 Mar; 115(9):2030-7. PubMed ID: 21322626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The photoisomerization of 11-cis-retinal protonated Schiff base in gas phase: insight from spin-flip density functional theory.
    Zhou P; Liu J; Han K; He G
    J Comput Chem; 2014 Jan; 35(2):109-20. PubMed ID: 24248974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conical intersection dynamics in solution: the chromophore of Green Fluorescent Protein.
    Toniolo A; Olsen S; Manohar L; Martínez TJ
    Faraday Discuss; 2004; 127():149-63. PubMed ID: 15471344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking at the Green Fluorescent Protein (GFP) chromophore from a different perspective: a computational insight.
    Paul BK; Guchhait N
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():295-303. PubMed ID: 23261626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-benzene interactions: an effective fragment potential and correlated quantum chemistry study.
    Slipchenko LV; Gordon MS
    J Phys Chem A; 2009 Mar; 113(10):2092-102. PubMed ID: 19072625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward understanding the redox properties of model chromophores from the green fluorescent protein family: an interplay between conjugation, resonance stabilization, and solvent effects.
    Ghosh D; Acharya A; Tiwari SC; Krylov AI
    J Phys Chem B; 2012 Oct; 116(41):12398-405. PubMed ID: 22978512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent effects on optical properties of molecules: a combined time-dependent density functional theory/effective fragment potential approach.
    Yoo S; Zahariev F; Sok S; Gordon MS
    J Chem Phys; 2008 Oct; 129(14):144112. PubMed ID: 19045139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extension of the Effective Fragment Potential Method to Macromolecules.
    Gurunathan PK; Acharya A; Ghosh D; Kosenkov D; Kaliman I; Shao Y; Krylov AI; Slipchenko LV
    J Phys Chem B; 2016 Jul; 120(27):6562-74. PubMed ID: 27314461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-H bond activation of methane in aqueous solution: a hybrid quantum mechanical/effective fragment potential study.
    Da Silva JC; Rocha WR
    J Comput Chem; 2011 Dec; 32(16):3383-92. PubMed ID: 21919013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant.
    Bose S; Chakrabarty S; Ghosh D
    J Phys Chem B; 2016 May; 120(19):4410-20. PubMed ID: 27116477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conical intersection dominates the generation of tropospheric hydroxyl radicals from NO2 and H2O.
    Fang Q; Han J; Jiang J; Chen X; Fang W
    J Phys Chem A; 2010 Apr; 114(13):4601-8. PubMed ID: 20235498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-induced frequency shifts: configuration interaction singles combined with the effective fragment potential method.
    Arora P; Slipchenko LV; Webb SP; DeFusco A; Gordon MS
    J Phys Chem A; 2010 Jul; 114(25):6742-50. PubMed ID: 20527868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.