BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 22830765)

  • 1. Dose optimization with first-order total-variation minimization for dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT).
    Kim H; Li R; Lee R; Goldstein T; Boyd S; Candes E; Xing L
    Med Phys; 2012 Jul; 39(7):4316-27. PubMed ID: 22830765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging the gap between IMRT and VMAT: dense angularly sampled and sparse intensity modulated radiation therapy.
    Li R; Xing L
    Med Phys; 2011 Sep; 38(9):4912-9. PubMed ID: 21978036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient IMRT inverse planning with a new L1-solver: template for first-order conic solver.
    Kim H; Suh TS; Lee R; Xing L; Li R
    Phys Med Biol; 2012 Jul; 57(13):4139-53. PubMed ID: 22683930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving IMRT delivery efficiency with reweighted L1-minimization for inverse planning.
    Kim H; Becker S; Lee R; Lee S; Shin S; Candès E; Xing L; Li R
    Med Phys; 2013 Jul; 40(7):071719. PubMed ID: 23822423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential for sparing of parotids and escalation of biologically effective dose with intensity-modulated radiation treatments of head and neck cancers: a treatment design study.
    Wu Q; Manning M; Schmidt-Ullrich R; Mohan R
    Int J Radiat Oncol Biol Phys; 2000 Jan; 46(1):195-205. PubMed ID: 10656393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving IMRT delivery efficiency using intensity limits during inverse planning.
    Coselmon MM; Moran JM; Radawski JD; Fraass BA
    Med Phys; 2005 May; 32(5):1234-45. PubMed ID: 15984674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy.
    Wang X; Zhang X; Dong L; Liu H; Wu Q; Mohan R
    Int J Radiat Oncol Biol Phys; 2004 Nov; 60(4):1325-37. PubMed ID: 15519806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of beam number on organ-at-risk sparing in dynamic multileaf collimator delivery of intensity modulated radiation therapy.
    Popple RA; Fiveash JB; Brezovich IA
    Med Phys; 2007 Oct; 34(10):3752-9. PubMed ID: 17985620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive formulation for volumetric modulated arc therapy planning.
    Nguyen D; Lyu Q; Ruan D; O'Connor D; Low DA; Sheng K
    Med Phys; 2016 Jul; 43(7):4263. PubMed ID: 27370141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beam’s-eye-view dosimetrics (BEVD) guided rotational station parameter optimized radiation therapy (SPORT) planning based on reweighted total-variation minimization.
    Kim H; Li R; Lee R; Xing L
    Phys Med Biol; 2015 Mar; 60(5):N71-82. PubMed ID: 25675281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT.
    Rao M; Cao D; Chen F; Ye J; Mehta V; Wong T; Shepard D
    Phys Med Biol; 2010 Nov; 55(21):6475-90. PubMed ID: 20959688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algorithm and performance of a clinical IMRT beam-angle optimization system.
    Djajaputra D; Wu Q; Wu Y; Mohan R
    Phys Med Biol; 2003 Oct; 48(19):3191-212. PubMed ID: 14579860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic direct aperture optimization using multiphase piecewise constant segmentation.
    Nguyen D; O'Connor D; Ruan D; Sheng K
    Med Phys; 2017 Nov; 44(11):5596-5609. PubMed ID: 28834556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.
    Hoegele W; Loeschel R; Merkle N; Zygmanski P
    Med Phys; 2012 Jan; 39(1):444-54. PubMed ID: 22225315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of IMRT beam complexity through the use of beam modulation penalties in the objective function.
    Matuszak MM; Larsen EW; Fraass BA
    Med Phys; 2007 Feb; 34(2):507-20. PubMed ID: 17388168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of IMRT plans for radical lung radiotherapy delivery with the step-and-shoot technique.
    Nioutsikou E; Bedford JL; Christian JA; Brada M; Webb S
    Med Phys; 2004 Apr; 31(4):892-901. PubMed ID: 15125007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Dosimetry analysis of intensity-modulated and conformal radiation therapy for head and neck tumors].
    Pesznyák C; Béla D; Takácsi-Nagy Z; Major T; Polgár C
    Magy Onkol; 2015 Jun; 59(2):95-101. PubMed ID: 26035156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse and forward optimization of one- and two-dimensional intensity-modulated radiation therapy-based treatment of concave-shaped planning target volumes: the case of prostate cancer.
    Corletto D; Iori M; Paiusco M; Brait L; Broggi S; Ceresoli G; Iotti C; Calandrino R; Fiorino C
    Radiother Oncol; 2003 Feb; 66(2):185-95. PubMed ID: 12648791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse-optimized 3D conformal planning: minimizing complexity while achieving equivalence with beamlet IMRT in multiple clinical sites.
    Fraass BA; Steers JM; Matuszak MM; McShan DL
    Med Phys; 2012 Jun; 39(6):3361-74. PubMed ID: 22755717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.