BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22830767)

  • 1. NPIP: A skew line needle configuration optimization system for HDR brachytherapy.
    Siauw T; Cunha A; Berenson D; Atamturk A; Hsu IC; Goldberg K; Pouliot J
    Med Phys; 2012 Jul; 39(7):4339-46. PubMed ID: 22830767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust stochastic optimization of needle configurations for robotic HDR prostate brachytherapy.
    Gerlach S; Siebert FA; Schlaefer A
    Med Phys; 2024 Jan; 51(1):464-475. PubMed ID: 37897883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices.
    Siauw T; Cunha A; Atamtürk A; Hsu IC; Pouliot J; Goldberg K
    Med Phys; 2011 Jul; 38(7):4045-51. PubMed ID: 21859003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous needle catheter selection and dwell time optimization for preplanning of high-dose-rate brachytherapy of prostate cancer.
    Wang C; Gonzalez Y; Shen C; Hrycushko B; Jia X
    Phys Med Biol; 2021 Mar; 66(5):055028. PubMed ID: 33264753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy.
    Poulin E; Fekete CA; Létourneau M; Fenster A; Pouliot J; Beaulieu L
    Med Phys; 2013 Nov; 40(11):111724. PubMed ID: 24320432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid dosimetry: feasibility of mixing angulated and parallel needles in planning prostate brachytherapy.
    Fu L; Liu H; Ng WS; Rubens D; Strang J; Messing E; Yu Y
    Med Phys; 2006 May; 33(5):1192-8. PubMed ID: 16752554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraoperative optimization of needle placement and dwell times for conformal prostate brachytherapy.
    Edmundson GK; Yan D; Martinez AA
    Int J Radiat Oncol Biol Phys; 1995 Dec; 33(5):1257-63. PubMed ID: 7493850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D needle-tissue interaction simulation for prostate brachytherapy.
    Goksel O; Salcudean SE; DiMaio SP; Rohling R; Morris J
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):827-34. PubMed ID: 16685923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4D analysis of influence of patient movement and anatomy alteration on the quality of 3D U/S-based prostate HDR brachytherapy treatment delivery.
    Milickovic N; Mavroidis P; Tselis N; Nikolova I; Katsilieri Z; Kefala V; Zamboglou N; Baltas D
    Med Phys; 2011 Sep; 38(9):4982-93. PubMed ID: 21978042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gEUD-based inverse planning technique for HDR prostate brachytherapy: feasibility study.
    Giantsoudi D; Baltas D; Karabis A; Mavroidis P; Zamboglou N; Tselis N; Shi C; Papanikolaou N
    Med Phys; 2013 Apr; 40(4):041704. PubMed ID: 23556874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new model using number of needles and androgen deprivation to predict chronic urinary toxicity for high or low dose rate prostate brachytherapy.
    Vargas C; Ghilezan M; Hollander M; Gustafson G; Korman H; Gonzalez J; Martinez A
    J Urol; 2005 Sep; 174(3):882-7. PubMed ID: 16093980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of needle displacement in multifraction high-dose-rate prostate brachytherapy: A prospective volumetric analysis and technical considerations.
    Peddada AV; Blasi OC; White GA; Monroe AT; Jennings SB; Gibbs GL
    Pract Radiat Oncol; 2015; 5(4):228-37. PubMed ID: 25543199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phantom study to assess accuracy of needle identification in real-time planning of ultrasound-guided high-dose-rate prostate implants.
    Schmid M; Crook JM; Batchelar D; Araujo C; Petrik D; Kim D; Halperin R
    Brachytherapy; 2013; 12(1):56-64. PubMed ID: 22513104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetric equivalence of nonstandard HDR brachytherapy catheter patterns.
    Cunha JA; Hsu IC; Pouliot J
    Med Phys; 2009 Jan; 36(1):233-9. PubMed ID: 19235391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of insertion speed and trocar stiffness on the accuracy of needle position for brachytherapy.
    McGill CS; Schwartz JA; Moore JZ; McLaughlin PW; Shih AJ
    Med Phys; 2012 Apr; 39(4):1811-7. PubMed ID: 22482603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous automatic segmentation of multiple needles using 3D ultrasound for high-dose-rate prostate brachytherapy.
    Hrinivich WT; Hoover DA; Surry K; Edirisinghe C; Montreuil J; D'Souza D; Fenster A; Wong E
    Med Phys; 2017 Apr; 44(4):1234-1245. PubMed ID: 28160517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy.
    Wang JZ; Mayr NA; Nag S; Montebello J; Gupta N; Samsami N; Kanellitsas C
    Med Phys; 2006 Apr; 33(4):1025-32. PubMed ID: 16696479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric benefits and preclinical performance of steerable needles in HDR prostate brachytherapy.
    de Vries M; Christianen MEMC; Luthart L; de Vries KC; Kolkman-Deurloo IKK; van den Dobbelsteen JJ
    Med Eng Phys; 2024 Jun; 128():104177. PubMed ID: 38789214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for accurate needle-tip identification in trans-rectal ultrasound-based high-dose-rate prostate brachytherapy.
    Zheng D; Todor DA
    Brachytherapy; 2011; 10(6):466-73. PubMed ID: 21549646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation study of ultrasound-based high-dose-rate prostate brachytherapy planning compared with CT-based planning.
    Batchelar D; Gaztañaga M; Schmid M; Araujo C; Bachand F; Crook J
    Brachytherapy; 2014; 13(1):75-9. PubMed ID: 24080299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.