These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 22831774)
1. Mammography segmentation with maximum likelihood active contours. Rahmati P; Adler A; Hamarneh G Med Image Anal; 2012 Aug; 16(6):1167-86. PubMed ID: 22831774 [TBL] [Abstract][Full Text] [Related]
2. Identification of the breast edge using areas enclosed by iso-intensity contours. Padayachee J; Alport MJ; Rae WI Comput Med Imaging Graph; 2007 Sep; 31(6):390-400. PubMed ID: 17398069 [TBL] [Abstract][Full Text] [Related]
3. Hybrid segmentation of mass in mammograms using template matching and dynamic programming. Song E; Xu S; Xu X; Zeng J; Lan Y; Zhang S; Hung CC Acad Radiol; 2010 Nov; 17(11):1414-24. PubMed ID: 20817575 [TBL] [Abstract][Full Text] [Related]
4. A review of automatic mass detection and segmentation in mammographic images. Oliver A; Freixenet J; Martí J; Pérez E; Pont J; Denton ER; Zwiggelaar R Med Image Anal; 2010 Apr; 14(2):87-110. PubMed ID: 20071209 [TBL] [Abstract][Full Text] [Related]
5. Markov random field-based clustering applied to the segmentation of masses in digital mammograms. Suliga M; Deklerck R; Nyssen E Comput Med Imaging Graph; 2008 Sep; 32(6):502-12. PubMed ID: 18620842 [TBL] [Abstract][Full Text] [Related]
6. An evaluation of contrast enhancement techniques for mammographic breast masses. Singh S; Bovis K IEEE Trans Inf Technol Biomed; 2005 Mar; 9(1):109-19. PubMed ID: 15787013 [TBL] [Abstract][Full Text] [Related]
7. Snakules: a model-based active contour algorithm for the annotation of spicules on mammography. Muralidhar GS; Bovik AC; Giese JD; Sampat MP; Whitman GJ; Haygood TM; Stephens TW; Markey MK IEEE Trans Med Imaging; 2010 Oct; 29(10):1768-80. PubMed ID: 20529728 [TBL] [Abstract][Full Text] [Related]
8. Digital mammogram spiculated mass detection and spicule segmentation using level sets. Ball JE; Bruce LM Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4979-84. PubMed ID: 18003124 [TBL] [Abstract][Full Text] [Related]
9. Steepest changes of a probability-based cost function for delineation of mammographic masses: a validation study. Kinnard L; Lo SC; Makariou E; Osicka T; Wang P; Chouikha MF; Freedman MT Med Phys; 2004 Oct; 31(10):2796-810. PubMed ID: 15543787 [TBL] [Abstract][Full Text] [Related]
10. A completely automated CAD system for mass detection in a large mammographic database. Bellotti R; De Carlo F; Tangaro S; Gargano G; Maggipinto G; Castellano M; Massafra R; Cascio D; Fauci F; Magro R; Raso G; Lauria A; Forni G; Bagnasco S; Cerello P; Zanon E; Cheran SC; Lopez Torres E; Bottigli U; Masala GL; Oliva P; Retico A; Fantacci ME; Cataldo R; De Mitri I; De Nunzio G Med Phys; 2006 Aug; 33(8):3066-75. PubMed ID: 16964885 [TBL] [Abstract][Full Text] [Related]
11. Detecting microcalcifications in digital mammograms using wavelet domain hidden Markov tree model. Regentova E; Zhang L; Zheng J; Veni G Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1972-5. PubMed ID: 17945686 [TBL] [Abstract][Full Text] [Related]
12. Breast mass segmentation in mammography using plane fitting and dynamic programming. Song E; Jiang L; Jin R; Zhang L; Yuan Y; Li Q Acad Radiol; 2009 Jul; 16(7):826-35. PubMed ID: 19362024 [TBL] [Abstract][Full Text] [Related]
13. A concentric morphology model for the detection of masses in mammography. Eltonsy NH; Tourassi GD; Elmaghraby AS IEEE Trans Med Imaging; 2007 Jun; 26(6):880-9. PubMed ID: 17679338 [TBL] [Abstract][Full Text] [Related]
14. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography. Zyout I; Czajkowska J; Grzegorzek M Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():95-107. PubMed ID: 25795630 [TBL] [Abstract][Full Text] [Related]
15. Technique for preprocessing of digital mammogram. Maitra IK; Nag S; Bandyopadhyay SK Comput Methods Programs Biomed; 2012 Aug; 107(2):175-88. PubMed ID: 21669471 [TBL] [Abstract][Full Text] [Related]
16. Polygonal modeling of contours of breast tumors with the preservation of spicules. Guliato D; Rangayyan RM; Carvalho JD; Santiago SA IEEE Trans Biomed Eng; 2008 Jan; 55(1):14-20. PubMed ID: 18232342 [TBL] [Abstract][Full Text] [Related]
17. A dual-stage method for lesion segmentation on digital mammograms. Yuan Y; Giger ML; Li H; Suzuki K; Sennett C Med Phys; 2007 Nov; 34(11):4180-93. PubMed ID: 18072482 [TBL] [Abstract][Full Text] [Related]
18. Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization. Sahiner B; Petrick N; Chan HP; Hadjiiski LM; Paramagul C; Helvie MA; Gurcan MN IEEE Trans Med Imaging; 2001 Dec; 20(12):1275-84. PubMed ID: 11811827 [TBL] [Abstract][Full Text] [Related]
19. Automated detection of breast mass spiculation levels and evaluation of scheme performance. Jiang L; Song E; Xu X; Ma G; Zheng B Acad Radiol; 2008 Dec; 15(12):1534-44. PubMed ID: 19000870 [TBL] [Abstract][Full Text] [Related]
20. Spiculation-preserving polygonal modeling of contours of breast tumors. Guliato D; Rangayyan RM; Daloia de Carvalho J; Anchieta Santiago S Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2791-4. PubMed ID: 17945740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]