These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 22831893)

  • 1. Eye-gaze independent EEG-based brain-computer interfaces for communication.
    Riccio A; Mattia D; Simione L; Olivetti M; Cincotti F
    J Neural Eng; 2012 Aug; 9(4):045001. PubMed ID: 22831893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.
    Marchetti M; Piccione F; Silvoni S; Gamberini L; Priftis K
    Neurorehabil Neural Repair; 2013 Jun; 27(5):430-8. PubMed ID: 23353184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.
    Barbosa S; Pires G; Nunes U
    J Neurosci Methods; 2016 Mar; 261():47-61. PubMed ID: 26687642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces.
    Xu H; Zhang D; Ouyang M; Hong B
    Clin Neurophysiol; 2013 Jan; 124(1):83-90. PubMed ID: 22854211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on transient VEP-based brain-computer interface using non-direct gazed visual stimuli.
    Yoshimura N; Itakura N
    Electromyogr Clin Neurophysiol; 2008; 48(1):43-51. PubMed ID: 18338534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation.
    Tonin L; Leeb R; Sobolewski A; Millán Jdel R
    J Neural Eng; 2013 Oct; 10(5):056007. PubMed ID: 23918205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Customized stimulation enhances performance of independent binary SSVEP-BCIs.
    Lopez-Gordo MA; Prieto A; Pelayo F; Morillas C
    Clin Neurophysiol; 2011 Jan; 122(1):128-33. PubMed ID: 20573542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual and auditory brain-computer interfaces.
    Gao S; Wang Y; Gao X; Hong B
    IEEE Trans Biomed Eng; 2014 May; 61(5):1436-47. PubMed ID: 24759277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 30+ years of P300 brain-computer interfaces.
    Allison BZ; Kübler A; Jin J
    Psychophysiology; 2020 Jul; 57(7):e13569. PubMed ID: 32301143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Usability and Workload of Access Technology for People With Severe Motor Impairment: A Comparison of Brain-Computer Interfacing and Eye Tracking.
    Pasqualotto E; Matuz T; Federici S; Ruf CA; Bartl M; Olivetti Belardinelli M; Birbaumer N; Halder S
    Neurorehabil Neural Repair; 2015; 29(10):950-7. PubMed ID: 25753951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does bimodal stimulus presentation increase ERP components usable in BCIs?
    Thurlings ME; Brouwer AM; Van Erp JB; Blankertz B; Werkhoven PJ
    J Neural Eng; 2012 Aug; 9(4):045005. PubMed ID: 22831989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaze-independent brain-computer interfaces based on covert attention and feature attention.
    Treder MS; Schmidt NM; Blankertz B
    J Neural Eng; 2011 Dec; 8(6):066003. PubMed ID: 21975312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time fMRI-based spelling device immediately enabling robust motor-independent communication.
    Sorger B; Reithler J; Dahmen B; Goebel R
    Curr Biol; 2012 Jul; 22(14):1333-8. PubMed ID: 22748322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian course of the P300 ERP in patients with amyotrophic lateral sclerosis - implications for brain-computer interfaces (BCI).
    Erlbeck H; Mochty U; Kübler A; Real RG
    BMC Neurol; 2017 Jan; 17(1):3. PubMed ID: 28061886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An independent SSVEP-based brain-computer interface in locked-in syndrome.
    Lesenfants D; Habbal D; Lugo Z; Lebeau M; Horki P; Amico E; Pokorny C; Gómez F; Soddu A; Müller-Putz G; Laureys S; Noirhomme Q
    J Neural Eng; 2014 Jun; 11(3):035002. PubMed ID: 24838215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control.
    Birbaumer N
    Psychophysiology; 2006 Nov; 43(6):517-32. PubMed ID: 17076808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous and endogenous orienting of visuospatial attention in P300-guided brain computer interfaces: a pilot study on healthy participants.
    Marchetti M; Piccione F; Silvoni S; Priftis K
    Clin Neurophysiol; 2012 Apr; 123(4):774-9. PubMed ID: 21903462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.