These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 22832032)
1. Lingual electrotactile stimulation as an alternative sensory feedback pathway for brain-computer interface applications. Wilson JA; Walton LM; Tyler M; Williams J J Neural Eng; 2012 Aug; 9(4):045007. PubMed ID: 22832032 [TBL] [Abstract][Full Text] [Related]
2. The effect of multimodal and enriched feedback on SMR-BCI performance. Sollfrank T; Ramsay A; Perdikis S; Williamson J; Murray-Smith R; Leeb R; Millán JDR; Kübler A Clin Neurophysiol; 2016 Jan; 127(1):490-498. PubMed ID: 26138148 [TBL] [Abstract][Full Text] [Related]
3. Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Matteau I; Kupers R; Ricciardi E; Pietrini P; Ptito M Brain Res Bull; 2010 Jul; 82(5-6):264-70. PubMed ID: 20466041 [TBL] [Abstract][Full Text] [Related]
4. Performance monitoring for brain-computer-interface actions. Schurger A; Gale S; Gozel O; Blanke O Brain Cogn; 2017 Feb; 111():44-50. PubMed ID: 27816779 [TBL] [Abstract][Full Text] [Related]
5. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training. Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330 [TBL] [Abstract][Full Text] [Related]
6. HyVE: hybrid vibro-electrotactile stimulation for sensory feedback and substitution in rehabilitation. D'Alonzo M; Dosen S; Cipriani C; Farina D IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):290-301. PubMed ID: 23782817 [TBL] [Abstract][Full Text] [Related]
7. The comparison of motor learning performance with and without feedback. Orand A; Ushiba J; Tomita Y; Honda S Somatosens Mot Res; 2012; 29(3):103-10. PubMed ID: 22746218 [TBL] [Abstract][Full Text] [Related]
8. Endogenous Sensory Discrimination and Selection by a Fast Brain Switch for a High Transfer Rate Brain-Computer Interface. Xu R; Jiang N; Dosen S; Lin C; Mrachacz-Kersting N; Dremstrup K; Farina D IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):901-10. PubMed ID: 26849869 [TBL] [Abstract][Full Text] [Related]
9. Dynamic cursor gain and tactual feedback in the capture of cursor movements. Keyson DV Ergonomics; 1997 Dec; 40(12):1287-98. PubMed ID: 9416013 [TBL] [Abstract][Full Text] [Related]
10. Assessing vibrotactile feedback strategies by controlling a cursor with unstable dynamics. Quick KM; Card NS; Whaite SM; Mischel J; Loughlin P; Batista AP Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2589-92. PubMed ID: 25570520 [TBL] [Abstract][Full Text] [Related]
11. Freeing the visual channel by exploiting vibrotactile BCI feedback. Leeb R; Gwak K; Kim DS; del R Millán J Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3093-6. PubMed ID: 24110382 [TBL] [Abstract][Full Text] [Related]
13. Comparing temporal aspects of visual, tactile, and microstimulation feedback for motor control. Godlove JM; Whaite EO; Batista AP J Neural Eng; 2014 Aug; 11(4):046025. PubMed ID: 25028989 [TBL] [Abstract][Full Text] [Related]
14. A comparison of tactile, auditory, and visual feedback in a pointing task using a mouse-type device. Akamatsu M; MacKenzie IS; Hasbroucq T Ergonomics; 1995 Apr; 38(4):816-27. PubMed ID: 7729406 [TBL] [Abstract][Full Text] [Related]
15. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513 [TBL] [Abstract][Full Text] [Related]
16. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845 [TBL] [Abstract][Full Text] [Related]
17. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects. Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371 [TBL] [Abstract][Full Text] [Related]
18. Fitts' law holds for pointing movements under conditions of restricted visual feedback. Wu J; Yang J; Honda T Hum Mov Sci; 2010 Dec; 29(6):882-92. PubMed ID: 20659774 [TBL] [Abstract][Full Text] [Related]
19. Brain-computer interface: changes in performance using virtual reality techniques. Ron-Angevin R; Díaz-Estrella A Neurosci Lett; 2009 Jan; 449(2):123-7. PubMed ID: 19000739 [TBL] [Abstract][Full Text] [Related]
20. Visual and tactile action effects determine bimanual coordination performance. Janczyk M; Skirde S; Weigelt M; Kunde W Hum Mov Sci; 2009 Aug; 28(4):437-49. PubMed ID: 19395106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]